1. 感知机原理(Perceptron)

2. 感知机(Perceptron)基本形式和对偶形式实现

3. 支持向量机(SVM)拉格朗日对偶性(KKT)

4. 支持向量机(SVM)原理

5. 支持向量机(SVM)软间隔

6. 支持向量机(SVM)核函数

1. 前言

今天终于能把感知机的实现补上了,感知机的原理在1. 感知机原理(Perceptron)中已经详尽的介绍,今天就是对感知机的两种实现方式,进行讲解。

2. 感知机实现

2.1 原始形式算法

假设读者们已经了解了感知机的原始形式的原理(不熟悉的请看1. 感知机原理(Perceptron)原始形式),下面是原始形式的步骤,方便对照后面的代码。

原始形式的步骤:

输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)

输出:\(w,b\);感知机模型\(f(x)=sign(w\cdot {x}+b)\)

  1. 赋初值 \(w_0,b_0\)
  2. 选取数据点\((x_i,y_i)\)
  3. 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(w\cdot {x_i}+b)<=0\)则更新

\[w={w+\eta{y_ix_i}}
\]

\[b={b+\eta{y_i}}
\]

  1. 转到2,直到训练集中没有误分类点

主要实现代码GitHub

def fit(self, X, y):
# 初始化参数w,b
self.w = np.zeros(X.shape[1])
self.b = 0
# 记录所有error
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, yi in zip(X, y):
update = self.eta * (yi - self.predict(xi))
self.w += update * xi
self.b += update
errors += int(update != 0.0)
if errors == 0:
break
self.errors_.append(errors) return self

2.2 对偶形式算法

假设读者们已经了解了感知机的对偶形式的原理(不熟悉的请看1. 感知机原理(Perceptron)对偶形式),下面是对偶形式的步骤,方便对照后面的代码。

对偶形式的步骤:

由于\(w,b\)的梯度更新公式:

\[w={w+\eta{y_ix_i}}
\]

\[b={b+\eta{y_i}}
\]

我们的\(w,b\)经过了\(n\)次修改后的,参数可以变化为下公式,其中\(\alpha = ny\):

\[w=\sum_{x_i\in{M}}\eta{y_ix_i}=\sum_{i=1}^n\alpha_iy_ix_i
\]

\[b=\sum_{x_i\in{M}}\eta{y_i}=\sum_{i=1}^n\alpha_iy_i
\]

这样我们就得出了感知机的对偶算法。

输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)

输出:\(\alpha,b\);感知机模型\(f(x)=sign(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x}+b)\)

其中\(\alpha=(\alpha_1,\alpha_2,...,\alpha_n)^T\)

  1. 赋初值 \(\alpha_0,b_0\)
  2. 选取数据点\((x_i,y_i)\)
  3. 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x_i}+b)<=0\)则更新

\[\alpha_i={\alpha_i+\eta}
\]

\[b={b+\eta{y_i}}
\]

  1. 转到2,直到训练集中没有误分类点

为了减少计算量,我们可以预先计算式中的内积,得到Gram矩阵

\[G=[x_i,x_j]_{N×N}
\]

主要实现代码GitHub

def fit(self, X, y):
"""
对偶形态的感知机
由于对偶形式中训练实例仅以内积的形式出现
因此,若事先求出Gram Matrix,能大大减少计算量
"""
# 读取数据集中含有的样本数,特征向量数
n_samples, n_features = X.shape
self.alpha, self.b = [0] * n_samples, 0
self.w = np.zeros(n_features)
# 计算Gram_Matrix
self.calculate_g_matrix(X) i = 0
while i < n_samples:
if self.judge(X, y, i) <= 0:
self.alpha[i] += self.eta
self.b += self.eta * y[i]
i = 0
else:
i += 1 for j in range(n_samples):
self.w += self.alpha[j] * X[j] * y[j] return self

3. 小结

感知机算法是一个简单易懂的算法,自己编程实现也不太难。前面提到它是很多算法的鼻祖,比如支持向量机算法,神经网络与深度学习。因此虽然它现在已经不是一个在实践中广泛运用的算法,还是值得好好的去研究一下。感知机算法对偶形式为什么在实际运用中比原始形式快,也值得好好去体会。

2. 感知机(Perceptron)基本形式和对偶形式实现的更多相关文章

  1. 感知机(perceptron)概念与实现

    感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...

  2. 20151227感知机(perceptron)

    1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...

  3. 感知机(perceptron)

  4. 神经网络 感知机 Perceptron python实现

    import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1 ...

  5. 1. 感知机原理(Perceptron)

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  6. 3. 支持向量机(SVM)拉格朗日对偶性(KKT)

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  7. 6. 支持向量机(SVM)核函数

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  8. 5. 支持向量机(SVM)软间隔

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  9. 4. 支持向量机(SVM)原理

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

随机推荐

  1. xtrabackup部分备份数据库 Partial Backups

    官方文档: 部分备份: http://www.percona.com/doc/percona-xtrabackup/2.1/innobackupex/partial_backups_innobacku ...

  2. 【转】Lisp 已死,Lisp 万岁!

    Lisp 已死,Lisp 万岁! 有一句古话,叫做“国王已死,国王万岁!”它的意思是,老国王已经死去,国王的儿子现在继位.这句话的幽默,就在于这两个“国王”其实指的不是同一个人,而你咋一看还以为它自相 ...

  3. 文件处理-智能检测编码的工具(chardet)

    一.chardet使用方法 问:假如你不知道你要处理的文件是什么编码可怎么办呢? import chardet f = open('通讯录.txt',mode='rb') data = f.read( ...

  4. [转]IDEA 导出自己的jar包 并且在另一个工程中引用

    1.导出jar包 1.1 idea导出jar包不如eclipse方便,但是熟练了也很容易操作 1.2 File -> Project Settings -> Artifacts(艺术品) ...

  5. IDEA(2018.01)安装和破解

    IDEA(2018.01)安装和破解 1.下载IDE https://www.jetbrains.com/idea/download/#section=windows 选择Ultimate版本 2.下 ...

  6. Python 爬虫实例(12)—— python selenium 爬虫

    # coding:utf- from common.contest import * def spider(): url = "http://www.salamoyua.com/es/sub ...

  7. 最强 Android Studio 使用小技巧和快捷键总结

    最强 Android Studio 使用小技巧和快捷键总结   写在前面 本文翻译自 Android Studio Tips by Philippe Breault,一共收集了62个 Android ...

  8. 64位matlab中libsvm的安装

    因为windows版的matlab对编译器的识别不好.所以直接在网上下了已经编译好的libsvm文件放入toolbox文件夹就可以用libsvm了 libsvm已编译好的文件下载地址: 猛戳我下载 1 ...

  9. apiDoc自动生成api文档

    在自定生成api文档方面以前都是使用swagger.json结合swagger工具来生成文档,偶然发现了apidoc这个生成api的工具,发现使用起来比swagger更加简单,下面整理一下使用过程: ...

  10. kafaka学习

    创建一个topic: [root@hdp1 bin]# ./kafka-topics. --replication-factor --partitions --topic justin Created ...