2. 感知机(Perceptron)基本形式和对偶形式实现
1. 感知机原理(Perceptron)
2. 感知机(Perceptron)基本形式和对偶形式实现
3. 支持向量机(SVM)拉格朗日对偶性(KKT)
4. 支持向量机(SVM)原理
5. 支持向量机(SVM)软间隔
6. 支持向量机(SVM)核函数
1. 前言
今天终于能把感知机的实现补上了,感知机的原理在1. 感知机原理(Perceptron)中已经详尽的介绍,今天就是对感知机的两种实现方式,进行讲解。
2. 感知机实现
2.1 原始形式算法
假设读者们已经了解了感知机的原始形式的原理(不熟悉的请看1. 感知机原理(Perceptron)原始形式),下面是原始形式的步骤,方便对照后面的代码。
原始形式的步骤:
输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)
输出:\(w,b\);感知机模型\(f(x)=sign(w\cdot {x}+b)\)
- 赋初值 \(w_0,b_0\)
- 选取数据点\((x_i,y_i)\)
- 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(w\cdot {x_i}+b)<=0\)则更新
\]
\]
- 转到2,直到训练集中没有误分类点
主要实现代码GitHub:
def fit(self, X, y):
# 初始化参数w,b
self.w = np.zeros(X.shape[1])
self.b = 0
# 记录所有error
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, yi in zip(X, y):
update = self.eta * (yi - self.predict(xi))
self.w += update * xi
self.b += update
errors += int(update != 0.0)
if errors == 0:
break
self.errors_.append(errors)
return self
2.2 对偶形式算法
假设读者们已经了解了感知机的对偶形式的原理(不熟悉的请看1. 感知机原理(Perceptron)对偶形式),下面是对偶形式的步骤,方便对照后面的代码。
对偶形式的步骤:
由于\(w,b\)的梯度更新公式:
\]
\]
我们的\(w,b\)经过了\(n\)次修改后的,参数可以变化为下公式,其中\(\alpha = ny\):
\]
\]
这样我们就得出了感知机的对偶算法。
输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)
输出:\(\alpha,b\);感知机模型\(f(x)=sign(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x}+b)\)
其中\(\alpha=(\alpha_1,\alpha_2,...,\alpha_n)^T\)
- 赋初值 \(\alpha_0,b_0\)
- 选取数据点\((x_i,y_i)\)
- 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x_i}+b)<=0\)则更新
\]
\]
- 转到2,直到训练集中没有误分类点
为了减少计算量,我们可以预先计算式中的内积,得到Gram矩阵
\]
主要实现代码GitHub:
def fit(self, X, y):
"""
对偶形态的感知机
由于对偶形式中训练实例仅以内积的形式出现
因此,若事先求出Gram Matrix,能大大减少计算量
"""
# 读取数据集中含有的样本数,特征向量数
n_samples, n_features = X.shape
self.alpha, self.b = [0] * n_samples, 0
self.w = np.zeros(n_features)
# 计算Gram_Matrix
self.calculate_g_matrix(X)
i = 0
while i < n_samples:
if self.judge(X, y, i) <= 0:
self.alpha[i] += self.eta
self.b += self.eta * y[i]
i = 0
else:
i += 1
for j in range(n_samples):
self.w += self.alpha[j] * X[j] * y[j]
return self
3. 小结
感知机算法是一个简单易懂的算法,自己编程实现也不太难。前面提到它是很多算法的鼻祖,比如支持向量机算法,神经网络与深度学习。因此虽然它现在已经不是一个在实践中广泛运用的算法,还是值得好好的去研究一下。感知机算法对偶形式为什么在实际运用中比原始形式快,也值得好好去体会。
2. 感知机(Perceptron)基本形式和对偶形式实现的更多相关文章
- 感知机(perceptron)概念与实现
感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...
- 20151227感知机(perceptron)
1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...
- 感知机(perceptron)
- 神经网络 感知机 Perceptron python实现
import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1 ...
- 1. 感知机原理(Perceptron)
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 3. 支持向量机(SVM)拉格朗日对偶性(KKT)
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 6. 支持向量机(SVM)核函数
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 5. 支持向量机(SVM)软间隔
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 4. 支持向量机(SVM)原理
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
随机推荐
- 【Android】Android实现监听返回键,主键(HOME),菜单键
目录结构: contents structure [+] 简介 监听 返回键 监听 主键(Home键) 监听 菜单键 一.简介 本篇文章介绍如何在Android中实现监听返回键,主键,菜单键.一般情况 ...
- 【java】Java泛型
一. 泛型概念的提出(为什么需要泛型)? 首先,我们看下下面这段简短的代码: 1 public class GenericTest { 2 3 public static void main(Stri ...
- response.encodeURL的用法
Java Servlet API 中引用 Session 机制来追踪客户的状态.Servlet API 中定义了 javax.servlet.http.HttpSession 接口,Servlet 容 ...
- Python -- map, Lambda, filter and reduce
map(func, seq)对seq中的每一个元素,调用func并返回结果.典型的应用是使用lambda函数. >>> def square(x): return x**2 > ...
- 具体解释Hibernate中cascade与inverse
学习hibernate的时候对级联关系的概念老是分不清楚,尤其是cascade.inverse傻傻分不清.以下通过样例来简单说明. 准备工作: 首先创建数据库,新建两张表: 教室表classes (字 ...
- Mysql:MyIsam和InnoDB的区别
MyISAM: 这个是默认类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Access Method (有索引的 顺序访问方法) 的缩写,它是存储记录和文件的标准方法 ...
- Android Studio入门指南 (历上最全,全球首发)
下载地址:http://pan.baidu.com/s/1CEMma 8月份的时候因为Android开发团队全部使用Android Studio进行开发,所以我整理了Android Studio的一些 ...
- Android Studio开发-高效插件强烈推荐
Android Studio开发-高效插件强烈推荐 现在Android的开发者基本上都使用Android Studio进行开发(如果你还在使用eclipse那也行,毕竟你乐意怎么样都行).使用好And ...
- JAVA中Set集合--HashSet的使用
一.使用HashSet添加一个String类型的值: public static void hashSet1(){ HashSet<String> hashSet = new HashSe ...
- jquery判断选择元素是否存在
有时候我们需要对jquery选择器选中的元素进行判断是否存在,如果存在才进行某些操作,不存在就不进行,那么如何判断元素是否存在,代码如下: //判断是否存在特定ID值的元素 ){ alert(&quo ...