一. GBDT的经典paper:《Greedy Function Approximation:A Gradient Boosting Machine》

Abstract

Function approximation是从function space方面进行numerical optimization,其将stagewise additive expansions和steepest-descent minimization结合起来。而由此而来的Gradient Boosting Decision Tree(GBDT)可以适用于regression和classification,都具有完整的,鲁棒性高,解释性好的优点。

1. Function estimation

在机器学习的任务中,我们一般面对的问题是构造loss function,并求解其最小值。可以写成如下形式:

通常的loss function有:

1. regression:均方误差(y-F)2,绝对误差|y-F|

2. classification:negative binomial log-likelihood log(1+e-2yF)

一般情况下,我们会把F(x)看做是一系列带参数的函数集合 F(x;P),于是进一步将其表示为“additive”的形式:

1.1 Numerical optimizatin

我们可以通过选取一个参数模型F(x;P),来将function optimization问题转化为一个parameter optimization问题:

进一步,我们可以把要优化的参数也表示为“additive”的形式:

1.2 Steepest-descent

梯度下降是最简单,最常用的numerical optimization method之一。

首先,计算出当前的梯度:

where 

而梯度下降的步长为:

where ,称为“line search”。

2. Numerical optimization in function space

现在,我们考虑“无参数”模型,转而考虑直接在function space 进行numerical optimization。这时候,我们将在每个数据点x处的函数值F(x)看做是一个“参数”,仍然是来对loss funtion求解最小值。

在function space,为了表示一个函数F(x),理想状况下有无数个点,但在现实中,我们用有限个(N个)离散点来表示它:

按照之前的numerical optimization的方式,我们需要求解:

使用steepest-descent,有:

where ,and 

3. Finite data

当我们面对的情况为:用有限的数据集表示x,y的联合分布的时候,上述的方法就有点行不通了。我们可以试试“greedy-stagewise”的方法:

但是对于一般的loss function和base learner来说,(9)式是很难求解的。给定了m次迭代后的当前近似函数Fm-1(x),当步长的direction是指数函数集合当中的一员时,可以看做是在求解最优值上的greedy step,同样,它也可以被看做是相同限制下的steepest-descent step。作为比较,给出了在无限制条件下,在Fm-1(x)处的steepest-descent step direction。一种行之有效的方法就是在求解的时候,把它取为无限制条件下的负梯度方向

where 

这就把(9)式中较难求解的优化问题转化为了一个基于均方误差的拟合问题。

Gradient Boosting的通用解法如下:

二. 对于GBDT的一些理解

1. Boosting

GBDT的全称是Gradient Boosting Decision Tree,Gradient Boosting和Decision Tree是两个独立的概念。因此我们先说说Boosting。Boosting的概念很好理解,意思是用一些弱分类器的组合来构造一个强分类器。因此,它不是某个具体的算法,它说的是一种理念。和这个理念相对应的是一次性构造一个强分类器。像支持向量机,逻辑回归等都属于后者。通常,我们通过相加来组合分类器,形式如下:

2. Gradient Boosting Modeling(GBM)


给定一个问题,我们如何构造这些弱分类器呢?Gradient Boosting Modeling (GBM) 就是构造 这些弱分类的一种方法。同样,它指的不是某个具体的算法,仍然只是一个理念。在理解 Gradient Boosting Modeling 之前,我们先看看一个典型的优化问题:

针对这种优化问题,有一个经典的算法叫 Steepest Gradient Descent,也就是最深梯度下降法。 这个算法的过程大致如下:

以上迭代过程可以这么理解:整个寻优的过程就是个小步快跑的过程,每跑一小步,都往函数当前下降最快的那个方向走一点。

这样寻优得到的结果可以表示成加和形式,即:

这个形式和以上Fm(x)是不是非常相似? Gradient Boosting 正是由此启发而来。 构造Fm(x)本身也是一个寻优的过程,只不过我们寻找的不是一个最优点,而是一个最优的函数。优化的目标通常都是通过一个损失函数来定义,即:

其中Loss(F(xi), yi)表示损失函数Loss在第i个样本上的损失值,xi和yi分别表示第 i 个样本的特征和目标值。常见的损失函数如平方差函数:

类似最深梯度下降法,我们可以通过梯度下降法来构造弱分类器f1, f2, ... , fm,只不过每次迭代时,令

即对损失函数L,以 F 为参考求取梯度。

这里有个小问题,一个函数对函数的求导不好理解,而且通常都无法通过上述公式直接求解 到梯度函数gi。为此,采取一个近似的方法,把函数Fi−1理解成在所有样本上的离散的函数值,即:

不难理解,这是一个 N 维向量,然后计算

这是一个函数对向量的求导,得到的也是一个梯度向量。注意,这里求导时的变量还是函数F,不是样本xk

严格来说 ĝi(xk) for k = 1,2, ... , N 只是描述了gi在某些个别点上的值,并不足以表达gi,但我们可以通过函数拟合的方法从ĝi(xk) for k = 1,2, ... , N 构造gi,这样我们就通过近似的方法得到了函数对函数的梯度求导。

因此 GBM 的过程可以总结为如下:

常量函数f0通常取样本目标值的均值,即

3. Gradient Boosting Decision Tree

以上 Gradient Boosting Modeling 的过程中,还没有说清楚如何通过离散值 ĝi−1(xj) for j = 1,2,3,...N 构造拟合函数gi−1。函数拟合是个比较熟知的概念,有很多现成的方法,不过有一种拟合方法广为应用,那就是决策树 Decision Tree,有关决策树的概念,理解GBDT重点首先是Gradient Boosting,其次才是 Decision Tree。GBDT 是 Gradient Boosting 的一种具体实例,只不过这里的弱分类器是决策树。如果你改用其他弱分类器 XYZ,你也可以称之为 Gradient Boosting XYZ。只不过 Decision Tree 很好用,GBDT 才如此引人注目。

4. 损失函数

谈到 GBDT,常听到一种简单的描述方式:“先构造一个(决策)树,然后不断在已有模型和实际样本输出的残差上再构造一颗树,依次迭代”。其实这个说法不全面,它只是 GBDT 的一种特殊情况,为了看清这个问题,需要对损失函数的选择做一些解释。

从对GBM的描述里可以看到Gradient Boosting过程和具体用什么样的弱分类器是完全独立的,可以任意组合,因此这里不再刻意强调用决策树来构造弱分类器,转而我们来仔细看看弱分类器拟合的目标值,即梯度ĝi−1(xj ),之前我们已经提到过

5. GBDT 和 AdaBoost

Boosting 是一类机器学习算法,在这个家族中还有一种非常著名的算法叫 AdaBoost,是 Adaptive Boosting 的简称,AdaBoost 在人脸检测问题上尤其出名。既然也是 Boosting,可以想象它的构造过程也是通过多个弱分类器来构造一个强分类器。那 AdaBoost 和 GBDT 有什么区别呢?

两者最大的区别在于,AdaBoost 不属于 Gradient Boosting,即它在构造弱分类器时并没有利用到梯度下降法的思想,而是用的Forward Stagewise Additive Modeling (FSAM)。为了理解 FSAM,在回过头来看看之前的优化问题。

严格来说之前描述的优化问题要求我们同时找出α1, α2, ... , αm和f1, f2, f3 ... , fm,这个问题很 难。为此我们把问题简化为分阶段优化,每个阶段找出一个合适的α 和f 。假设我们已经 得到前 m-1 个弱分类器,即Fm−1(x),下一步在保证Fm−1(x)不变的前提下,寻找合适的 αmfm(x)。按照损失函数的定义,我们可以得到

如果 Loss 是平方差函数,则我们有

这里yi − Fm−1(xi)就是当前模型在数据上的残差,可以看出,求解合适的αmfm(x)就是在这 当前的残差上拟合一个弱分类器,且损失函数还是平方差函数。这和 GBDT 选择平方差损失 函数时构造弱分类器的方法恰好一致。

(1)拟合的是“残差”,对应于GBDT中的梯度方向。

(2)损失函数是平方差函数,对应于GBDT中用Decision Tree来拟合“残差”。

其中 wim−1= exp(−yi(Fm−1(xi))和要求解的αmfm(x)无关,可以当成样本的权重,因此在这种情况下,构造弱分类器就是在对样本设置权重后的数据上拟合,且损失函数还是指数形式。 这个就是 AdaBoost,不过 AdaBoost 最早并不是按这个思路推出来的,相反,是在 AdaBoost 提出 5 年后,人们才开始用 Forward Stagewise Additive Modeling 来解释 AdaBoost 背后的原理。

为什么要把平方差和指数形式 Loss 函数单独拿出来说呢?这是因为对这两个损失函数来说, 按照 Forward Stagewise Additive Modeling 的思路构造弱分类器时比较方便。如果是平方差损 失函数,就在残差上做平方差拟合构造弱分类器; 如果是指数形式的损失函数,就在带权 重的样本上构造弱分类器。但损失函数如果不是这两种,问题就没那么简单,比如绝对差值 函数,虽然构造弱分类器也可以表示成在残差上做绝对差值拟合,但这个子问题本身也不容 易解,因为我们是要构造多个弱分类器的,所以我们当然希望构造弱分类器这个子问题比较 好解。因此 FSAM 思路无法推广到其他一些实用的损失函数上。相比而言,Gradient Boosting Modeling (GBM) 有什么优势呢?GBM 每次迭代时,只需要计算当前的梯度,并在平方差损 失函数的基础上拟合梯度。虽然梯度的计算依赖原始问题的损失函数形式,但这不是问题, 只要损失函数是连续可微的,梯度就可以计算。至于拟合梯度这个子问题,我们总是可以选 择平方差函数作为这个子问题的损失函数,因为这个子问题是一个独立的回归问题。

因此 FSAM 和 GBM 得到的模型虽然从形式上是一样的,都是若干弱模型相加,但是他们求 解弱分类器的思路和方法有很大的差别。只有当选择平方差函数为损失函数时,这两种方法 等同。

6. 为何GBDT受人青睐

以上比较了 GBM 和 FSAM,可以看到 GBM 在损失函数的选择上有更大的灵活性,但这不足以解释GBDT的全部优势。GBDT是拿Decision Tree作为GBM里的弱分类器,GBDT的优势 首先得益于 Decision Tree 本身的一些良好特性,具体可以列举如下:

  1. Decision Tree 可以很好的处理 missing feature,这是他的天然特性,因为决策树的每个节点只依赖一个 feature,如果某个 feature 不存在,这颗树依然可以拿来做决策,只是少一些路径。像逻辑回归,SVM 就没这个好处。

  2. Decision Tree 可以很好的处理各种类型的 feature,也是天然特性,很好理解,同样逻辑回归和 SVM 没这样的天然特性。

  3. 对特征空间的 outlier 有鲁棒性,因为每个节点都是 x <

    GBDT理论知识总结的更多相关文章

    1. [笔记]GBDT理论知识总结

      一. GBDT的经典paper:<Greedy Function Approximation:A Gradient Boosting Machine> Abstract Function ...

    2. js中函数的一些理论知识

        函数的一些理论知识 1. 函数:                执行一个明确的动作并提供一个返回值的独立代码块.同时函数也是javascript中的一级公民(就是函数和其它变量一样). 2.函数的 ...

    3. 用VC进行COM编程所必须掌握的理论知识

      一.为什么要用COM 软件工程发展到今天,从一开始的结构化编程,到面向对象编程,再到现在的COM编程,目标只有一个,就是希望软件能象积方块一样是累起来的,是组装起来的,而不是一点点编出来的.结构化编程 ...

    4. 图形学理论知识 BRDF 双向反射分布函数(Bidirectional Reflectance Distribution Function)

      图形学理论知识 BRDF 双向反射分布函数 Bidirectional Reflectance Distribution Function BRDF理论 BRDF表示的是双向反射分布函数(Bidire ...

    5. TestNG学习-001-基础理论知识

      此 文主要讲述用 TestNG 的基础理论知识,TestNG 的特定,编写测试过程三步骤,与 JUnit4+ 的差异,以此使亲对 TestNG 测试框架能够有一个简单的认知. 希望能对初学 TestN ...

    6. [转] DDD领域驱动设计(三) 之 理论知识收集汇总

      最近一直在学习领域驱动设计(DDD)的理论知识,从网上搜集了一些个人认为比较有价值的东西,贴出来和大家分享一下: 我一直觉得不要盲目相信权威,比如不能一谈起领域驱动设计,就一定认为国外的那个Eric ...

    7. Winsock网络编程笔记(4)----基本的理论知识

      前面的笔记记录了Winsock的入门编程,领略了Winsock编程的乐趣..但这并不能算是掌握了Winsock,加深理论知识的理解才会让后续学习更加得心应手..因此,这篇笔记将记录一些有关Winsoc ...

    8. Android初级教程对大量数据的做分页处理理论知识

      有时候要加载的数据上千条时,页面加载数据就会很慢(数据加载也属于耗时操作).因此就要考虑分页甚至分批显示.先介绍一些分页的理论知识.对于具体用在哪里,会在后续博客中更新. 分页信息 1,一共多少条数据 ...

    9. Android初级教程理论知识(第四章内容提供器)

      之前第三章理论知识写到过数据库.数据库是在程序内部自己访问自己.而内容提供器是访问别的程序数据的,即跨程序共享数据.对访问的数据也无非就是CRUD. 内容提供者 应用的数据库是不允许其他应用访问的 内 ...

    随机推荐

    1. 简易扩展Visual Studio UnitTesting支持TestMethodCase

      NUnit的TestCaseAttribute可以简化大量的测试参数输入用例的编写,如果基于Visual Studio Unit Test Project开发则默认没有类似的功能,看一段对比代码: p ...

    2. 基本类型算法题目学习(EPI)

      1.关于奇偶校验的方法中,如何快速的求取一个64-bit的数字的奇偶校验位.(如果1的位数为奇数,则奇偶校验位为1,如果1的位数为偶数,则奇偶校验位为0) a.暴力枚举法采用一位一位进行计算,一位一位 ...

    3. [工具] 将Sublime Text 3配置为Java代码编辑器

      新建编译器选项 选择菜单栏中的 Tools ——> Build System ——> New Build System ,输入: { "cmd": ["jav ...

    4. 用mongoose实现mongodb增删改查

      //用户 var mongoose = require("mongoose"), setting = require("./setting"); //配置连接数 ...

    5. springMVC访问 WEB-INF 下的 jsp 和 html

      配置freemarker,记得加上jar包 <?xml version="1.0" encoding="UTF-8"?> <beans xml ...

    6. opencv3在CMakeLists.txt中的调用问题

      在cmake工程中使用opencv需要在CMakeLists.txt文件中加以调用,在opencv2.xx版本,可以用以下语句 # 寻找OpenCV库 find_package( OpenCV REQ ...

    7. 计蒜客 31001 - Magical Girl Haze - [最短路][2018ICPC南京网络预赛L题]

      题目链接:https://nanti.jisuanke.com/t/31001 题意: 一带权有向图,有 n 个节点编号1~n,m条有向边,现在一人从节点 1 出发,他有最多 k 次机会施展魔法使得某 ...

    8. HDU 1166 - 敌兵布阵 - [单点修改、区间查询zkw线段树]

      题还是那个题:http://www.cnblogs.com/dilthey/p/6827959.html 不过我们今天换一种线段树实现来做这道题: 关于zkw线段树的讲解:https://zhuanl ...

    9. JNUOJ 1187 - 哨兵

      Time Limit: 10000ms Memory Limit: 262154KB 64-bit integer IO format: %lld      Java class name: Main ...

    10. Ubuntu:如何显示系统托盘图标(systray)

      1. 问题说明 Ubuntu 11版本开始,默认关闭了托盘图标的显示,需要手动执行命令或额外工具配置,添加到白名单.Ubuntu 13.04更彻底,默认配置根本没有托盘图标,除了java和wine等几 ...