当然,对于Spfa判负环,实际上还有优化:就是把判断单个点的入队次数大于n改为:如果总的点入队次数大于所有点两倍

时有负环,或者单个点的入队次数大于sqrt(点数)有负环。这样时间复杂度就降了很多了。

判断给定的有向图中是否存在负环。

利用 spfa 算法判断负环有两种方法:

1) spfa 的 dfs 形式,判断条件是存在一点在一条路径上出现多次。

2) spfa 的 bfs 形式,判断条件是存在一点入队次数大于总顶点数。

代码如下:

法 1 (spfa 的 dfs 形式):

#include <iostream>

#include <cstdio>

#include <cstring>

using namespace std;

const int oo = 1 << 30;

const int maxn = 1010;

struct Edge {

int u, v, t, next;

}edge[2010];

int prev[maxn], p[maxn], d[maxn];

bool vis[maxn], flag;

int tot;

void addEdge(int u, int v, int t) {

edge[tot].u = u;

edge[tot].v = v;

edge[tot].t = t;

edge[tot].next = prev[u];

prev[u] = tot ++;

}

void spfa(int u) {

int v;

for (int i = prev[u]; i != -1; i = edge[i].next) {

v = edge[i].v;

if (d[u] + edge[i].t < d[v]) {

if (vis[v]) {            //存在一点在一条路径上出现多次

flag = true;

return ;

}

else {

d[v] = d[u] + edge[i].t;

vis[v] = true;

spfa(v);

}

}

}

}

int main() {

//freopen("input.txt", "r", stdin);

//freopen("output.txt", "w", stdout);

int T;

int a, b, t;

int n, m;

scanf("%d", &T);

while (T --) {

scanf("%d%d", &n, &m);

memset(prev, -1, sizeof(prev));

tot = 0;

for (int i = 1; i <= m; i ++) {

scanf("%d%d%d", &a, &b, &t);

addEdge(a, b, t);

}

memset(vis, false, sizeof(vis));

fill(d, d + n, oo);

d[0] = 0;

flag = false;

spfa(0);

if (flag) printf("possible\n");

else printf("not possible\n");

}

return 0;

}

法 2 (spfa 的 bfs 形式):

#include <iostream>

#include <cstdio>

#include <cstring>

#include <queue>

using namespace std;

const int oo = 1 << 30;

const int maxn = 1010;

struct Edge {

int u, v, t, next;

}edge[2010];

int prev[maxn], p[maxn], d[maxn], in[maxn];

bool vis[maxn];

int tot;

queue<int> q;

void addEdge(int u, int v, int t) {

edge[tot].u = u;

edge[tot].v = v;

edge[tot].t = t;

edge[tot].next = prev[u];

prev[u] = tot ++;

}

bool spfa(int n) {

int u, v;

while (!q.empty()) q.pop();

memset(vis, false, sizeof(vis));

memset(in, 0, sizeof(in));

fill(d, d + n, oo);

d[0] = 0; vis[0] = true;

q.push(0);

while (!q.empty()) {

u = q.front();

vis[u] = false;

for (int i = prev[u]; i != -1; i = edge[i].next) {

v = edge[i].v;

if (d[u] + edge[i].t < d[v]) {

d[v] = d[u] + edge[i].t;

if (!vis[v]) {

in[v] ++;

if (in[v] > n) return true;                //存在一点入队次数大于总顶点数

vis[v] = true;

q.push(v);

}

}

}

vis[u] = false;

q.pop();

}

return false;

}

int main() {

//freopen("input.txt", "r", stdin);

//freopen("output.txt", "w", stdout);

int T;

int a, b, t;

int n, m;

scanf("%d", &T);

while (T --) {

scanf("%d%d", &n, &m);

memset(prev, -1, sizeof(prev));

tot = 0;

for (int i = 1; i <= m; i ++) {

scanf("%d%d%d", &a, &b, &t);

addEdge(a, b, t);

}

if (spfa(n)) printf("possible\n");

else printf("not possible\n");

}

return 0;

}

spfa 判断负环 (转载)的更多相关文章

  1. POJ 3259 Wormholes【最短路/SPFA判断负环模板】

    农夫约翰在探索他的许多农场,发现了一些惊人的虫洞.虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的前达到目的地!他的N(1≤N≤500)个农场被编号为1..N,之间有M(1≤M≤2500)条路径 ...

  2. spfa判断负环

    会了spfa这么长时间竟然不会判断负环,今天刚回.. [例题]poj3259 题目大意:当农场主 John 在开垦他的农场时,他发现了许多奇怪的昆虫洞.这些昆虫洞是单向的,并且可以把你从入口送到出口, ...

  3. Wormholes---poj3259(最短路 spfa 判断负环 模板)

    题目链接:http://poj.org/problem?id=3259 题意是问是否能通过虫洞回到过去: 虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts. 我们把虫洞看成是一条负权路,问 ...

  4. POJ 3259 Wormholes ( SPFA判断负环 && 思维 )

    题意 : 给出 N 个点,以及 M 条双向路,每一条路的权值代表你在这条路上到达终点需要那么时间,接下来给出 W 个虫洞,虫洞给出的形式为 A B C 代表能将你从 A 送到 B 点,并且回到 C 个 ...

  5. Extended Traffic LightOJ - 1074 spfa判断负环

    //判断负环 在负环内的城市输出? #include <iostream> #include <queue> #include <cstdio> #include ...

  6. Wormholes POJ - 3259 spfa判断负环

    //判断负环 dist初始化为正无穷 //正环 负无穷 #include<iostream> #include<cstring> #include<queue> # ...

  7. UVA 558 SPFA 判断负环

    这个承认自己没看懂题目,一开始以为题意是形成环路之后走一圈不会产生负值就输出,原来就是判断负环,用SPFA很好用,运用队列,在判断负环的时候,用一个数组专门保存某个点的访问次数,超过了N次即可断定有负 ...

  8. POJ3259 Wormholes(SPFA判断负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  9. L - The Shortest Path Gym - 101498L (dfs式spfa判断负环)

    题目链接:https://cn.vjudge.net/contest/283066#problem/L 题目大意:T组测试样例,n个点,m条边,每一条边的信息是起点,终点,边权.问你是不是存在负环,如 ...

随机推荐

  1. 《转》Python学习(19)-python函数(二)-关于lambda

    转自http://www.cnblogs.com/BeginMan/p/3178103.html 一.lambda函数 1.lambda函数基础: lambda函数也叫匿名函数,即,函数没有具体的名称 ...

  2. strcat的几种实现及性能比较

    一  原型说明 strcat()为C语言标准库函数,用于字符串拼接.函数原型声明在string.h头文件中: char *strcat(char *dest, const char *src); 该函 ...

  3. 【图算法】Dijkstra算法及变形

    图示: 模版: /* Dijkstra计算单源最短路径,并记录路径 m个点,n条边,每条边上的权值非负,求起点st到终点et的最短路径 input: n m st et 6 10 1 6 1 2 6 ...

  4. UVA 10120 - Gift?!(搜索+规律)

     Problem D. Gift?!  The Problem There is a beautiful river in a small village. N rocks are arranged ...

  5. Esper学习之十二:EPL语法(八)

    今天的内容十分重要,在Esper的应用中是十分常用的功能之一.它是一种事件集合,我们可以对这个集合进行增删查改,所以在复杂的业务场景中我们肯定不会缺少它.它就是Named Window. 由于本篇篇幅 ...

  6. 题目1162:I Wanna Go Home(最短路径问题进阶dijkstra算法))

    题目链接:http://ac.jobdu.com/problem.php?pid=1162 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...

  7. angularjs笔记《二》

    小颖最近不知怎么了,老是犯困,也许是清明节出去玩,到现在还没缓过来吧,玩回来真的怕坐车了,报了个两日游得团,光坐车了,把人坐的难受得,去了也就是爬山,回来感觉都快瘫了,小颖去的时候还把我家仔仔抱着一起 ...

  8. 第二步 (仅供参考) sencha touch + PhoneGap(cordova 2.9 及其以下版本) 使用 adt eclipse进行打包

    首先你得安装一个adt-eclipse 参考资料 http://www.crifan.com/android_eclipse_offline_install_adt/ 然后就可以运行adt-eclip ...

  9. vue生成路由实例

    一.vue路由https://router.vuejs.org/zh-cn/1.bower下载vue-routervue的里的链接 <router-link to="/home&quo ...

  10. cocos2d-x学习之旅(五):1.5 使用eclipse编译cocos2d-x示例项目,创建cocos2d-x android项目并部署到真机

    今天将cocos2d-x的示例项目tests编译到android真机运行,以及如何创建cocos2d-x的android项目. 打开cocos2d-x的tests项目,路径为:D:\cocos2d-x ...