Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31583    Accepted Submission(s): 11174

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

 
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
 
Output
Output the maximal summation described above in one line.
 
 
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 
Sample Output
6 8

Hint
Huge input, scanf and dynamic programming is recommended.
 
不加优化:
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<memory.h>
using namespace std;
int dp[][],a[];
int main()
{
int n,m,j,i,k,Max;
while(~scanf("%d%d",&m,&n)){
Max=;
memset(dp,,sizeof(dp));
for(i=;i<=n;i++) scanf("%d",&a[i]);
for(i=;i<=m;i++)
for(j=i+1;j<=n;j++){
dp[i%][j]=dp[i%][j-]+a[j];
for(k=i-;k<=j-;k++)
if(dp[(i-)%][k]+a[j]>dp[i%][j]) dp[i%][j]=dp[(i-)%][k]+a[j];
if(i==m&&dp[i%][j]>Max) Max=dp[i%][j];
}
printf("%d\n",Max);
}
return ;
}
然后发现k的范围【i-1,j-1】之间可以直接记录一个Maxp
emmmmm,以前做过还是搞忘了
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<memory.h>
using namespace std;
int dp[][],a[];
int main()
{
int n,m,j,i,k,Max,Maxp;
while(~scanf("%d%d",&m,&n)){
Max=-;
for(i=;i<=n;i++) scanf("%d",&a[i]);
for(i=;i<=n;i++) dp[][i]=dp[][i]=; for(i=;i<=m;i++) {
Maxp=dp[(i-)%][i-];
dp[i%][i]=dp[(i-)%][i-]+a[i];
for(j=i+;j<=n-m+i;j++){
if(dp[(i-)%][j-]>Maxp) Maxp=dp[(i-)%][j-];
dp[i%][j]=dp[i%][j-]+a[j];
if(Maxp+a[j]>dp[i%][j]) dp[i%][j]=Maxp+a[j];
}
}
for(i=m;i<=n;i++)
if(dp[m%][i]>Max) Max=dp[m%][i];
printf("%d\n",Max);
}
return ;
}

至于此题的数据范围,呵呵,不存在的。

 

HDU1024 最大M子段和问题 (单调队列优化)的更多相关文章

  1. tyvj1305 最大子序和 【单调队列优化dp】

    描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7 当m=2或m=3时,S=5+1=6 输 ...

  2. Tyvj1305最大子序和(单调队列优化dp)

    描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入 ...

  3. 「学习笔记」单调队列优化dp

    目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...

  4. BestCoder Round #89 02单调队列优化dp

    1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01  HDU 5944   水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...

  5. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  6. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  7. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  8. UESTC 880 生日礼物 --单调队列优化DP

    定义dp[i][j]表示第i天手中有j股股票时,获得的最多钱数. 转移方程有: 1.当天不买也不卖: dp[i][j]=dp[i-1][j]; 2.当天买了j-k股: dp[i][j]=max(dp[ ...

  9. poj 1821 Fence 单调队列优化dp

    /* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...

  10. 使用单调队列优化的 O(nm) 多重背包算法

    我搜索了一下,找到了一篇很好的博客,讲的挺详细:链接. 解析 多重背包的最原始的状态转移方程: 令 c[i] = min(num[i], j / v[i]) f[i][j] = max(f[i-1][ ...

随机推荐

  1. Spark与Flink大数据处理引擎对比分析!

    大数据技术正飞速地发展着,催生出一代又一代快速便捷的大数据处理引擎,无论是Hadoop.Storm,还是后来的Spark.Flink.然而,毕竟没有哪一个框架可以完全支持所有的应用场景,也就说明不可能 ...

  2. jq 插入结构

    一.插入 1. append $("#div").append('<a href="baidu.com">a</a>') ;   // ...

  3. C# DataTable列名不区分大小写

    一直很纠结的就是DataTable的列名如何才能规范,从Oracle取出的DataTable都是大写,最后尝试了一下,原来C#的DataTable列名并不区分大小写,具体例子如下: DataTable ...

  4. android--------Dagger2介绍与简单使用(一)

    1:Dagger2是啥 Dagger是为Android和Java平台提供的一个完全静态的,在编译时进行依赖注入的框架,原来是由Square公司维护的然后现在把这堆东西扔给Google维护了. 一般的I ...

  5. php--------使用js生成二维码

    php生成二维码有多种方式,可以在JS中,也可以使用php库,今天写的这个小案例是使用JS生成二维码. 其他方式可以看下一篇文章:php--------php库生成二维码和有logo的二维码 网站开发 ...

  6. gradle 编译 No such property: sonatypeUsername错误解决

    No such property: sonatypeUsername for class: org.gradle.api.publication.maven.internal.ant.DefaultG ...

  7. protobuf3.5.1使用的简单例子

    前言 1. 什么是protobuf Google Protocol Buffer( 简称 Protobuf) 是 Google 公司内部的混合语言数据标准,是一种轻便高效的结构化数据存储格式,平台无关 ...

  8. Service Account和其secrets 作用和场景,看了不亏。。

    Service Account概念的引入是基于这样的使用场景: 运行在pod里的进程需要调用Kubernetes API以及非Kubernetes API的其它服务.Service Account它并 ...

  9. BZOJ1197 [HNOI2006]花仙子的魔法

    其实是一道奇怪的DP题,蒟蒻又不会做... 看了Vfk的题解才算弄明白是怎么一回事: 令f[i, j]表示i维有j个球时最大切割部分,则 f[i, j] = f[i, j - 1] + f[i - 1 ...

  10. 14 printf输出格式及栈空间分配

    假设在一个32位的 little endian的机器上运行下面程序,输出结果:1 0 2 #include<stdio.h> int main() { ,b=,c=; printf(&qu ...