Kadj Squares
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 3594   Accepted: 1456

Description

In this problem, you are given a sequence S1S2, ..., Sn of squares of different sizes. The sides of the squares are integer numbers. We locate the squares on the positive x-y quarter of the plane, such that their sides make 45 degrees with x and y axes, and one of their vertices are on y=0 line. Let bi be the x coordinates of the bottom vertex of Si. First, put S1 such that its left vertex lies on x=0. Then, put S1, (i > 1) at minimum bi such that

  • bi > bi-1 and
  • the interior of Si does not have intersection with the interior of S1...Si-1.

The goal is to find which squares are visible, either entirely or partially, when viewed from above. In the example above, the squares S1S2, and S4 have this property. More formally, Si is visible from above if it contains a point p, such that no square other than Si intersect the vertical half-line drawn from p upwards.

Input

The input consists of multiple test cases. The first line of each test case is n (1 ≤ n ≤ 50), the number of squares. The second line contains n integers between 1 to 30, where the ith number is the length of the sides of Si. The input is terminated by a line containing a zero number.

Output

For each test case, output a single line containing the index of the visible squares in the input sequence, in ascending order, separated by blank characters.

Sample Input

4
3 5 1 4
3
2 1 2
0

Sample Output

1 2 4
1 3

Source

题意:

n个正方形45度角的放,边靠着边,放完了之后从顶部往下看。有哪些正方形没有被挡住。

思路:

我们从这张图来看,正方形之间的三角形是等腰三角形,边长是两个正方形边长的较小值。

我们现在记下每个正方形的最左的横坐标,和最右的横坐标,和边长。并且我们假设输入的边长是实际边长投影在横坐标上的长度。

因为大家都同时放大,是不影响结果的。

当我们摆好了前面i-1个正方形之后,摆第i个正方形。那么可以知道第i个正方形的左端点应该是前面所有正方形的最右端点减去两个正方形边长之差。

摆好第i个正方形之后我们再看,前i-1个正方形中有哪几个被遮掉了一部分。

有两种情况,一种是左边的遮掉右边的,一种是右边的遮掉左边的。

 #include <iostream>
#include <set>
#include <cmath>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
//#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define inf 0x7f7f7f7f const int maxn = ;
int n;
struct node{
int len, l, r;
}squ[maxn]; int main()
{
while(scanf("%d", &n) != EOF && n){
for(int i = ; i <= n; i++){
scanf("%d", &squ[i].len);
squ[i].l = ;
for(int j = ; j < i; j++){
squ[i].l = max(squ[i].l, squ[j].r - abs(squ[i].len - squ[j].len));
}
squ[i].r = squ[i].l + * squ[i].len;
for(int j = ; j < i; j++){
if(squ[j].r > squ[i].l){
if(squ[i].len > squ[j].len){
squ[j].r = squ[i].l;
}
else{
squ[i].l = squ[j].r;
}
}
}
} bool flag = true;
for(int i = ; i <= n; i++){
if(squ[i].l < squ[i].r){
if(flag){
printf("%d", i);
flag = false;
}
else{
printf(" %d", i);
}
}
}
printf("\n"); }
return ;
}

poj3347 Kadj Squares【计算几何】的更多相关文章

  1. poj3347 Kadj Squares (计算几何)

    D - Kadj Squares Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  2. POJ3347 Kadj Squares

    嘟嘟嘟 题意:给出一堆正方形的边长,且这些正方形都是\(45 ^ {\circ}\)斜放着并且紧挨着的,求从上往下看能看到几个正方形. 真是一道好题--跟计算几何关系不大. 想一下,如果我们能求出正方 ...

  3. POJ 3347 Kadj Squares 计算几何

    求出正方形的左右端点,再判断是否覆盖 #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  4. POJ 3347 Kadj Squares

    Kadj Squares Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 2132   Accepted: 843 Descr ...

  5. POJ 3347 Kadj Squares (计算几何)

    题目: Description In this problem, you are given a sequence S1, S2, ..., Sn of squares of different si ...

  6. POJ 3347 Kadj Squares (计算几何+线段相交)

    题意:从左至右给你n个正方形的边长,接着这些正方形都按照旋转45度以一角为底放置坐标轴上,最左边的正方形左端点抵住y轴,后面的正方形依次紧贴前面所有正方形放置,问从上方向下看去,有哪些正方形是可以被看 ...

  7. POJ3347:Kadj Squares——题解

    http://poj.org/problem?id=3347 题目大意:给定一些正方形的边长,让他们尽可能向左以45°角排列(不能互相重合),求在上面看只能看到哪几个正方形. ———————————— ...

  8. Kadj Squares - POJ 3347

    题目大意:给一些序列的正方形的边长,然后让这个正方形倾斜45度,放在第一象限,一个角要紧挨着x轴,按照输入的顺序放下去,然后问最后从上往下看可以看到那些正方形?   分析:不能算是计算几何题..... ...

  9. 简单几何(线段覆盖) POJ 3347 Kadj Squares

    题目传送门 题意:告诉每个矩形的边长,它们是紧贴着的,问从上往下看,有几个还能看到. 分析:用网上猥琐的方法,将边长看成左端点到中心的距离,这样可以避免精度问题.然后先求出每个矩形的左右端点,然后如果 ...

随机推荐

  1. python __all__用法

    主要是用来限定暴露的api a.py文件里面的内容 __all__ = ['major_fun'] def major_fun(): pass def assist_fun(): pass b.py ...

  2. 运动规划 (Motion Planning): MoveIt! 与 OMPL---44

    原创博文:转载请标明出处:http://www.cnblogs.com/zxouxuewei 最近有不少人询问有关MoveIt!与OMPL相关的话题,但是大部分问题都集中于XXX功能怎么实现,XXX错 ...

  3. EditDistance,求两个字符串最小编辑距离,动态规划

    问题描述: 题目描述Edit DistanceGiven two words word1 and word2, find the minimum number of steps required to ...

  4. ios7注意事项随笔

    1,修改状态栏的样式和隐藏. 首先,需要在Info.plist配置文件中,增加键:UIViewControllerBasedStatusBarAppearance,并设置为YES: 然后,在UIVie ...

  5. 2、一、Introduction(入门):1、Application Fundamentals(应用程序基础)

    一.Introduction(入门) 1.Application Fundamentals(应用程序基础) Android apps are written in the Java programmi ...

  6. Eclipse------导入项目后出现Java compiler level does not match the version of the installed Java project facet

    报错信息:Java compiler level does not match the version of the installed Java project facet 解决方法: 1.点击工具 ...

  7. 错误 error C2678: 二进制“<”: 没有找到接受“const card”类型的左操作数的运算符(或没有可接受的转换)

    错误出现的地方如下 而我又重载了<运算符,但是我没有将<运算符重载函数定义成const类型,此处是const _Ty&,不可以调用非const成员函数 而且,一般而言,像<, ...

  8. java的对象锁和类锁

    在java编程中,经常需要用到同步,而用得最多的也许是synchronized关键字了,下面看看这个关键字的用法. 因为synchronized关键字涉及到锁的概念,所以先来了解一些相关的锁知识. j ...

  9. Nginx 访问日志

    配置访问日志: [root@localhost ~]$ cat /usr/local/nginx/conf/nginx.conf http { log_format main '$remote_add ...

  10. Unity3D Shader官方教程翻译(十九)----Shader语法,编写表面着色器

    Writing Surface Shaders Writing shaders that interact with lighting is complex. There are different ...