ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777
Time Limit: 2 Seconds Memory Limit: 65536 KB
The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have a great effect on the result of the contest. For example, it will take more time to finish the first problem if the easiest problem hides in the middle of the problem list.
There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems in a different way. After a careful study, he found out that the i-th problem placed in the j-th position will add Pij points of "interesting value" to the contest.
Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to M points, the permutation is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers N (1 <= N <= 12) and M (1 <= M <= 500).
The next N lines, each line contains N integers. The j-th integer in the i-th line is Pij (0 <= Pij <= 100).
Output
For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and have no other common divisors than 1. If it is impossible to get an acceptable permutation, output "No solution" instead.
Sample Input
2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4
Sample Output
3/1
No solution
题意:
有n个题目,按从简单到难,若把第i难的题目放到第j个位置,会产生P[i][j]的“有趣度”;
现在有一个随机产生这n个题目排列的程序,若一个排列它的所有题目有趣度之和大于等于m,则算作满足要求;
求产生一个满足要求的题目排列的期望次数。
题解:
状压DP做法:state是一个n位的二进制数,每一位 1 or 0 代表了该位置是否被占掉了;
假设dp[state][k]代表:前i道题的放置情况按state安排,产生有趣度为k的方案数;
状态转移:
若要计算cnt道题目按state安排情况下,dp[state][k]的值(所有有趣度k>m的方案都算在k=m里),则:
从state里去掉一道题目,假设去掉的是放在第i个位置上的那道题目,得到new_state(这个new_state必然小于state),
再枚举k=0~m,dp[state][(k+p[cnt][i])] += dp[new_state][k],同样记得把所有有趣度k>m的方案都算到k=m里。
正确性:
当state=0时,即初始dp[0][0]为1,dp[0][1~m]都为0,这是正确的,故可以从state=1开始状态转移;
同时,正如前面说的new_state必然小于state,我们从小到大枚举state,那么计算state时所有new_state都必然已经计算好了。
AC代码:
#include<bits/stdc++.h>
using namespace std; int n,m;
int p[][];
int dp[<<][]; inline int gcd(int m,int n){return n?gcd(n,m%n):m;} int fact[];
void calcfact()
{
fact[]=;
for(int i=;i<=;i++) fact[i]=fact[i-]*i;
} int main()
{
calcfact(); int t;
scanf("%d",&t);
memset(p,,sizeof(p));
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) for(int j=;j<=n;j++) scanf("%d",&p[i][j]); memset(dp,,sizeof(dp));
dp[][]=;
for(int sta=;sta<(<<n);sta++) //遍历所有状态
{
int cnt=; //cnt表示已经安排好了cnt道题目
for(int i=;i<=n;i++) if(sta&(<<(i-))) cnt++; for(int i=;i<=n;i++)
{
if( ( sta & (<<(i-)) ) == ) continue; for(int k=;k<=m;k++)
{
if(k+p[cnt][i]>=m) dp[sta][m]+=dp[sta^(<<(i-))][k];
else dp[sta][k+p[cnt][i]]+=dp[sta^(<<(i-))][k];
}
}
} if(dp[(<<n)-][m]==)
{
printf("No solution\n");
continue;
} int down=dp[(<<n)-][m];
int up=fact[n];
int g=gcd(up,down);
printf("%d/%d\n",up/g,down/g);
}
}
时间复杂度O(n2)+O(2nmn)+O(lg(n!)),显然在数据较大时,主要影响项是O(2nmn),根据数据规模(2^12)*12*500 ≈ 2e7,足够。
PS.自从上次做状压DP专题之后,很久没有再做状压DP的题目了,发现自己对状压DP的理解还是不够深刻,而且忘记地也很快,需要复习巩固。
ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]的更多相关文章
- ZOJ 3780 - Paint the Grid Again - [模拟][第11届浙江省赛E题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Time Limit: 2 Seconds Me ...
- zoj3777 Problem Arrangement(状压dp,思路赞)
The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward i ...
- ZOJ 3777 B - Problem Arrangement 状压DP
LINK:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:有N(\( N <= 12 \))道题,排顺序 ...
- zoj 3777 Problem Arrangement(壮压+背包)
Problem Arrangement Time Limit: 2 Seconds Memory Limit: 65536 KB The 11th Zhejiang Provincial C ...
- 2014 Super Training #4 B Problem Arrangement --状压DP
原题:ZOJ 3777 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:给每个题目安排在每个位置的value ...
- ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds Me ...
- FZU - 2218 Simple String Problem(状压dp)
Simple String Problem Recently, you have found your interest in string theory. Here is an interestin ...
- zoj 3777 Problem Arrangement
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5264 题意:给出n道题目以及每一道题目不同时间做的兴趣值,让你求出所有做题顺序 ...
- ZOJ 3723 (浙大月赛)状压DP
A了一整天~~~终于搞掉了. 真是血都A出来了. 题目意思很清楚,肯定是状压DP. 我们可以联系一下POJ 1185 炮兵阵地,经典的状压DP. 两道题的区别就在于,这道题的攻击是可以被X挡住的,而 ...
随机推荐
- Java实现在复制文件时使用进度条
在对大文件操作时,可能会需要些时间,此时为用户提供进度条提示是非常常见的一项功能,这样用户就可以了解操作文件需要的时间信息.本实例为大家介绍了在复制大的文件时使用的进度条提示,需要注意的是,只有在读取 ...
- Cookie 和 Session机制具体解释
原文地址:http://blog.csdn.net/fangaoxin/article/details/6952954 会话(Session)跟踪是Web程序中经常使用的技术,用来跟踪用户的整 ...
- Dubbo -- 系统学习 笔记 -- 配置参考手册
Dubbo -- 系统学习 笔记 -- 目录 配置参考手册 <dubbo:service/> <dubbo:reference/> <dubbo:protocol/> ...
- 【RF库XML测试】Get Element
Name:Get ElementSource:XML <test library>Arguments:[ source | xpath=. ]Returns an element in t ...
- zabbix的源码安装
前提:安装好lnmp环境,参考: 搭建LNMP环境 下载软件包 1. 下载并解压安装包 cd /usr/local/src wget https://ncu.dl.sourceforge.net/ ...
- Oracle的闪回技术--闪回已删除的表
注意闪回技术只能保护非系统表决空间中的表,而且表空间必须本地管理, 外键将不可以被恢复, 索引和约束的名字将会被命名为以BIN开头,由系统生成的名字 查看是否开启闪回: SQL> show pa ...
- css媒体查询来书写二倍图三倍图设置
@media (-webkit-min-device-pixel-ratio: 2){} @media (-webkit-min-device-pixel-ratio: 3){}
- button按钮不能点击鼠标形状css 代码,禁用button按钮时鼠标形状
cursor:not-allowed;
- 在RDLC报表中对纸张的设置
RDLC报表是存放成XML文件格式的,这一点你可以直接打开RDLC报表文件看一下,而且在使用时,通过ReportViewer来读取报表并与数据源进行合成,也就是说RDLC是定义了一个格式,那就不能通过 ...
- IDA + VMware 调试win7 x64
IDA+gdb配合VMware调试windows已经不是什么新鲜事了,但是之所以要发这篇帖子是因为我按照之前的帖子还有网上其他的教程设置调试环境,结果遇到了各种问题,所以仅仅是更新一下,各位轻拍. 环 ...