题目链接:http://poj.org/problem?id=1269

Time Limit: 1000MS Memory Limit: 10000K

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

题意:

给出四个点的坐标,分别用来表示两条直线,求两条直线的关系是共线还是平行还是相交,若是相交则给出交点坐标(保留小数点后两位)。

题解:

直接套用模板中的点到直线距离以及求直线交点的函数模板即可。

AC代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
//--------------------------------------计算几何模板 - st-------------------------------------- const double eps = 1e-;
const double M_PI = 3.14159265358979323846; struct Point{
double x,y;
Point(double tx=,double ty=):x(tx),y(ty){}
};
typedef Point Vctor; //向量的加减乘除
Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);}
Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);}
Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);}
Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);}
bool operator < (Point A,Point B){return A.x < B.x || (A.x == B.x && A.y < B.y);} struct Line{
Point p;
Vctor v;
Line(Point p=Point(,),Vctor v=Vctor(,)):p(p),v(v){}
Point point(double t){return p + v*t;} //获得直线上的距离p点t个单位长度的点
};
struct Circle{
Point c;
double r;
Circle(Point tc=Point(,),double tr=):c(tc),r(tr){}
Point point(double a){return Point( c.x + cos(a)*r , c.y + sin(a)*r);}
}; int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return (x<)?(-):();
}
bool operator == (Point A,Point B){return dcmp(A.x-B.x)== && dcmp(A.y-B.y)==;} //向量的点积,长度,夹角
double Dot(Vctor A,Vctor B){return A.x*B.x+A.y*B.y;}
double Length(Vctor A){return sqrt(Dot(A,A));}
double Angle(Vctor A,Vctor B){return acos(Dot(A,B)/Length(A)/Length(B));} //叉积,三角形面积
double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;}
double TriangleArea(Point A,Point B,Point C){return Cross(B-A,C-A);} //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
Vctor Rotate(Vctor A,double rad){return Vctor( A.x*cos(rad) - A.y*sin(rad) , A.x*sin(rad) + A.y*cos(rad) );}
Vctor Normal(Vctor A)
{
double L = Length(A);
return Vctor(-A.y/L, A.x/L);
} //直线的交点
Point getLineIntersection(Line L1,Line L2)
{
Vctor u = L1.p-L2.p;
double t = Cross(L2.v,u)/Cross(L1.v,L2.v);
return L1.p + L1.v*t;
} //点到直线的距离
double DistanceToLine(Point P,Line L)
{
return fabs(Cross(P-L.p,L.v))/Length(L.v);
} //--------------------------------------计算几何模板 - ed--------------------------------------
double x[],y[];
Line L1,L2;
int CheckTwoLines(Line L1,Line L2)//1-共线,2-平行,3-相交
{
if(dcmp( L1.v.x * L2.v.y - L2.v.x * L1.v.y ) == ) //两直线的方向向量平行
{
if( DistanceToLine(L1.p,L2) < eps ) //直线1上的点也在直线2上
return ;
else
return ;
}
else return ;
}
int main()
{
int t;
scanf("%d",&t);
printf("INTERSECTING LINES OUTPUT\n");
while(t--)
{
for(int i=;i<=;i++) scanf("%lf%lf",x+i,y+i);
L1=Line(Point(x[],y[]),Point(x[],y[])-Point(x[],y[]));
L2=Line(Point(x[],y[]),Point(x[],y[])-Point(x[],y[])); int relation=CheckTwoLines(L1,L2);
if(relation==)
printf("LINE\n");
else if(relation==)
printf("NONE\n");
else
{
Point ans=getLineIntersection(L1,L2);
printf("POINT %.2f %.2f\n",ans.x,ans.y);
//此处使用G++时用 %.2f 输出,使用C++时用 %.2lf 输出
}
}
printf("END OF OUTPUT\n");
}

POJ 1269 - Intersecting Lines - [平面几何模板题]的更多相关文章

  1. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  2. POJ 1269 Intersecting Lines(线段相交,水题)

    id=1269" rel="nofollow">Intersecting Lines 大意:给你两条直线的坐标,推断两条直线是否共线.平行.相交.若相交.求出交点. ...

  3. ●POJ 1269 Intersecting Lines

    题链: http://poj.org/problem?id=1269 题解: 计算几何,直线交点 模板题,试了一下直线的向量参数方程求交点的方法. (方法详见<算法竞赛入门经典——训练指南> ...

  4. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  5. poj 1269 Intersecting Lines

    题目链接:http://poj.org/problem?id=1269 题目大意:给出四个点的坐标x1,y1,x2,y2,x3,y3,x4,y4,前两个形成一条直线,后两个坐标形成一条直线.然后问你是 ...

  6. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  7. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  8. POJ 1269 Intersecting Lines 直线交

    不知道谁转的计算几何题集里面有这个题...标题还写的是基本线段求交... 结果题都没看就直接敲了个线段交...各种姿势WA一遍以后发现题意根本不是线段交而是直线交...白改了那个模板... 乱发文的同 ...

  9. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

随机推荐

  1. MapWinGIS------下载与安装

    最新版本下载地址: https://github.com/MapWindow/MapWinGIS/releases 1.下载后按步骤安装即可 2.右键以管理员身份运行cmd,运行:regsvr32 C ...

  2. Cookie 和 Session机制具体解释

    原文地址:http://blog.csdn.net/fangaoxin/article/details/6952954     会话(Session)跟踪是Web程序中经常使用的技术,用来跟踪用户的整 ...

  3. SpringMVC由浅入深day02_5数据回显_6异常处理器

    5 数据回显 5.1 什么数据回显 表单提交失败需要再回到表单页面重新填写,原来提交的数据需要重新在页面上显示. 5.2 pojo数据回显方法 1.springmvc默认对pojo数据进行回显. po ...

  4. mongodb命令(1)

    成功启动MongoDB服务后,打开一个命令行窗口输入mongo,就可以进行数据库的一些操作. 输入help可以看到基本操作命令: show dbs:显示数据库列表 show collections:显 ...

  5. MinGW 是什么

    3.1:MinGW 是什么? MinGW 提供了一套简单方便的Windows下的基于GCC 程序开发环境.MinGW 收集了一系列免费的Windows 使用的头文件和库文件:同时整合了GNU ( ht ...

  6. vux (scroller)上拉刷新、下拉加载更多

    1)比较关键的地方是要在 scroller 组件上里加一个 ref 属性 <scroller :lockX=true height="-170" :pulldown-conf ...

  7. FFMPEG转换WAV到MP3

    下载FFMPEG https://ffmpeg.zeranoe.com/builds/ Example to encode VBR MP3 audio with ffmpeg using the li ...

  8. Python对文件和文件路径的管理

    1. 使用os.path进行路径和文件管理 1.1 拆分路径 os.path.split                   返回一个二元组,包含文件路径和文件名 os.path.dirname    ...

  9. C++空类

    class Empty { public: Empty(); // 缺省构造函数 Empty( const Empty& ); // 拷贝构造函数 ~Empty(); // 析构函数 Empt ...

  10. 【Spring源码分析系列】启动component-scan类扫描加载过程

    原文地址:http://blog.csdn.net/xieyuooo/article/details/9089441/ 在spring 3.0以上大家都一般会配置一个Servelet,如下所示: &l ...