题目链接:http://poj.org/problem?id=1269

Time Limit: 1000MS Memory Limit: 10000K

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

题意:

给出四个点的坐标,分别用来表示两条直线,求两条直线的关系是共线还是平行还是相交,若是相交则给出交点坐标(保留小数点后两位)。

题解:

直接套用模板中的点到直线距离以及求直线交点的函数模板即可。

AC代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
//--------------------------------------计算几何模板 - st-------------------------------------- const double eps = 1e-;
const double M_PI = 3.14159265358979323846; struct Point{
double x,y;
Point(double tx=,double ty=):x(tx),y(ty){}
};
typedef Point Vctor; //向量的加减乘除
Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);}
Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);}
Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);}
Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);}
bool operator < (Point A,Point B){return A.x < B.x || (A.x == B.x && A.y < B.y);} struct Line{
Point p;
Vctor v;
Line(Point p=Point(,),Vctor v=Vctor(,)):p(p),v(v){}
Point point(double t){return p + v*t;} //获得直线上的距离p点t个单位长度的点
};
struct Circle{
Point c;
double r;
Circle(Point tc=Point(,),double tr=):c(tc),r(tr){}
Point point(double a){return Point( c.x + cos(a)*r , c.y + sin(a)*r);}
}; int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return (x<)?(-):();
}
bool operator == (Point A,Point B){return dcmp(A.x-B.x)== && dcmp(A.y-B.y)==;} //向量的点积,长度,夹角
double Dot(Vctor A,Vctor B){return A.x*B.x+A.y*B.y;}
double Length(Vctor A){return sqrt(Dot(A,A));}
double Angle(Vctor A,Vctor B){return acos(Dot(A,B)/Length(A)/Length(B));} //叉积,三角形面积
double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;}
double TriangleArea(Point A,Point B,Point C){return Cross(B-A,C-A);} //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
Vctor Rotate(Vctor A,double rad){return Vctor( A.x*cos(rad) - A.y*sin(rad) , A.x*sin(rad) + A.y*cos(rad) );}
Vctor Normal(Vctor A)
{
double L = Length(A);
return Vctor(-A.y/L, A.x/L);
} //直线的交点
Point getLineIntersection(Line L1,Line L2)
{
Vctor u = L1.p-L2.p;
double t = Cross(L2.v,u)/Cross(L1.v,L2.v);
return L1.p + L1.v*t;
} //点到直线的距离
double DistanceToLine(Point P,Line L)
{
return fabs(Cross(P-L.p,L.v))/Length(L.v);
} //--------------------------------------计算几何模板 - ed--------------------------------------
double x[],y[];
Line L1,L2;
int CheckTwoLines(Line L1,Line L2)//1-共线,2-平行,3-相交
{
if(dcmp( L1.v.x * L2.v.y - L2.v.x * L1.v.y ) == ) //两直线的方向向量平行
{
if( DistanceToLine(L1.p,L2) < eps ) //直线1上的点也在直线2上
return ;
else
return ;
}
else return ;
}
int main()
{
int t;
scanf("%d",&t);
printf("INTERSECTING LINES OUTPUT\n");
while(t--)
{
for(int i=;i<=;i++) scanf("%lf%lf",x+i,y+i);
L1=Line(Point(x[],y[]),Point(x[],y[])-Point(x[],y[]));
L2=Line(Point(x[],y[]),Point(x[],y[])-Point(x[],y[])); int relation=CheckTwoLines(L1,L2);
if(relation==)
printf("LINE\n");
else if(relation==)
printf("NONE\n");
else
{
Point ans=getLineIntersection(L1,L2);
printf("POINT %.2f %.2f\n",ans.x,ans.y);
//此处使用G++时用 %.2f 输出,使用C++时用 %.2lf 输出
}
}
printf("END OF OUTPUT\n");
}

POJ 1269 - Intersecting Lines - [平面几何模板题]的更多相关文章

  1. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  2. POJ 1269 Intersecting Lines(线段相交,水题)

    id=1269" rel="nofollow">Intersecting Lines 大意:给你两条直线的坐标,推断两条直线是否共线.平行.相交.若相交.求出交点. ...

  3. ●POJ 1269 Intersecting Lines

    题链: http://poj.org/problem?id=1269 题解: 计算几何,直线交点 模板题,试了一下直线的向量参数方程求交点的方法. (方法详见<算法竞赛入门经典——训练指南> ...

  4. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  5. poj 1269 Intersecting Lines

    题目链接:http://poj.org/problem?id=1269 题目大意:给出四个点的坐标x1,y1,x2,y2,x3,y3,x4,y4,前两个形成一条直线,后两个坐标形成一条直线.然后问你是 ...

  6. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  7. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  8. POJ 1269 Intersecting Lines 直线交

    不知道谁转的计算几何题集里面有这个题...标题还写的是基本线段求交... 结果题都没看就直接敲了个线段交...各种姿势WA一遍以后发现题意根本不是线段交而是直线交...白改了那个模板... 乱发文的同 ...

  9. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

随机推荐

  1. IOS指纹识别调用

    最近正在开发的一个app需要加入指纹识别的功能,先搜索一下找到官方文档,简单易懂: https://developer.apple.com/library/ios/documentation/Loca ...

  2. python的输出问题

    我们知道python提供了一个shell来供初学者学习,在shell里是输入一句执行一句,例如:

  3. SpringBoot thymeleaf模板版本,thymeleaf模板更换版本

    SpringBoot thymeleaf模板版本 thymeleaf模板更换版本 修改thymeleaf模板版本 ================================ ©Copyright ...

  4. 【重要】攻击动作时间段判断~使用动画time比较动画length和使用一个变量数组做延迟

    using UnityEngine; using System.Linq; using System.Collections.Generic; [RequireComponent(typeof(Cha ...

  5. vc11(vs2012)下编译php源码

    需要原料: vs2012.php源码 1.本机的mingw没搞定,参考网上文章尝试vs2012编译,借助vs2012自带的命令行工具: 需要去bison官网下载bison.exe放在“c:/windo ...

  6. Linux设备驱动剖析之IIC(一)

    写在前面 由于IIC总线只需要两根线就可以完成读写操作,而且通信协议简单,一条总线上可以挂载多个设备,因此被广泛使用.但是IIC总线有一个缺点,就是传输速率比较低.本文基于Linux-2.6.36版本 ...

  7. WP8.1学习系列(第二十一章)——本地应用数据

    了解如何存储和检索本地应用数据存储中的设置和文件. 路线图: 本主题与其他主题有何关联?请参阅: 使用 C# 或 Visual Basic 的 Windows 运行时应用的路线图 使用 C++ 的 W ...

  8. android基础---->WidGet的使用

    Widget是一个可以添加在别的应用程序中的”小部件”,我们可以使用自定义的Widget远程控制我们的程序做一些事情.一般用于在桌面上添加一个小部件,现在我们开始小部件的学习. 目录导航: WidGe ...

  9. Shell 中的反引号(`),单引号('),双引号(")

    在写shell的时候老是傻傻分不清楚,今天来理一理. 1.反引号位 (`) 位于键盘的Tab键的上方.1键的左方.注意与单引号(')位于Enter键的左方的区别. 在Linux中起着命令替换的作用.命 ...

  10. css - 文字元素等的美化效果代码汇总(更新中...)

    投影的设置 -webkit-box-reflect: below 0px -webkit-gradient(linear, left top, left bottom, from(transparen ...