Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].

The objective of the game is to end with the most stones.  The total number of stones is odd, so there are no ties.

Alex and Lee take turns, with Alex starting first.  Each turn, a player takes the entire pile of stones from either the beginning or the end of the row.  This continues until there are no more piles left, at which point the person with the most stones wins.

Assuming Alex and Lee play optimally, return True if and only if Alex wins the game.

Example 1:

Input: [5,3,4,5]
Output: true
Explanation:
Alex starts first, and can only take the first 5 or the last 5.
Say he takes the first 5, so that the row becomes [3, 4, 5].
If Lee takes 3, then the board is [4, 5], and Alex takes 5 to win with 10 points.
If Lee takes the last 5, then the board is [3, 4], and Alex takes 4 to win with 9 points.
This demonstrated that taking the first 5 was a winning move for Alex, so we return true.

Note:

  1. 2 <= piles.length <= 500
  2. piles.length is even.
  3. 1 <= piles[i] <= 500
  4. sum(piles) is odd.

这个题目思路跟[LintCode] 395. Coins in a Line 2_Medium tag: Dynamic Programming, 博弈很像, 只不过这里是利用 区间Dynamic Programing的方法,所以只用一维的dp已经不够了, 另外初始化的时候我们不直接用for loop, 而是用类似于dfs recursive的方法去将初始化放在helper fuction里面. 另外得到的

动态方程式为  A[i][j] = max( piles[i] + min(A[i+1][j-1] + A[i+2][j]) , piles[j] + min(A[i+1][j-1], A[i][j-2]) )

init;

A[i][i] = piles[i]

A[i][i+1] = max(piles[i], piles[i+1])

1. Constraints

1) size [2,500], even number

2) element [1,50], integer

3) sum(piles) is odd, no ties

2. Ideas

Dynamic Programming   ,     T: O(n^2)     S; O(n^2)

3. Code

 class Solution:
def stoneGame(self, piles):
n = len(piles)
dp, flag = [[0]*n for _ in range(n)], [[0]*n for _ in range(n)]
def helper(left, right):
if flag[left][right]:
return dp[left][right]
if left == right:
dp[left][right] = piles[left]
elif left + 1 = right:
dp[left][right] = max(piles[left], piles[right])
elif left < right: # left > right, init 0
value_l = piles[left] + min(helper(left+2, right), helper(left + 1, right -1))
value_r = piles[right] + min(helper(left+1, right-1), helper(left, right - 2))
dp[left][right] = max(value_l, value_r)
flag[left][right] = 1
return dp[left][right]
return helper(0, n-1) > sum(piles)//2

4. Test cases

[5,3,4,5]
 

[LeetCode] 877. Stone Game == [LintCode] 396. Coins in a Line 3_hard tag: 区间Dynamic Programming, 博弈的更多相关文章

  1. [LeetCode] 312. Burst Balloons_hard tag: 区间Dynamic Programming

    Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by ...

  2. [LintCode] 395. Coins in a Line 2_Medium tag: Dynamic Programming, 博弈

    Description There are n coins with different value in a line. Two players take turns to take one or ...

  3. [LeetCode] questions conclusion_ Dynamic Programming

    Questions: [LeetCode] 198. House Robber _Easy tag: Dynamic Programming [LeetCode] 221. Maximal Squar ...

  4. [LeetCode] 877. Stone Game 石子游戏

    Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, ...

  5. lintcode 394. Coins in a Line 、leetcode 292. Nim Game 、lintcode 395. Coins in a Line II

    变型:如果是最后拿走所有石子那个人输,则f[0] = true 394. Coins in a Line dp[n]表示n个石子,先手的人,是必胜还是必输.拿1个石子,2个石子之后都是必胜,则当前必败 ...

  6. [LintCode] 394. Coins in a Line_ Medium tag:Dynamic Programming_博弈

    Description There are n coins in a line. Two players take turns to take one or two coins from right ...

  7. 396. Coins in a Line III

    刷 July-31-2019 换成只能从左边或者右边拿.这个确实和Coins in a Line II有关系. 和上面思路一致,也是MinMax思路,只不过是从左边和右边选,相应对方也是这样. pub ...

  8. LeetCode 877. Stone Game

    原题链接在这里:https://leetcode.com/problems/stone-game/ 题目: Alex and Lee play a game with piles of stones. ...

  9. leetcode 877. Stone Game 详解 -——动态规划

    原博客地址 https://blog.csdn.net/androidchanhao/article/details/81271077 题目链接 https://leetcode.com/proble ...

随机推荐

  1. Qt编写百度离线版人脸识别+比对+活体检测

    在AI技术发展迅猛的今天,很多设备都希望加上人脸识别功能,好像不加上点人脸识别功能感觉不够高大上,都往人脸识别这边靠,手机刷脸解锁,刷脸支付,刷脸开门,刷脸金融,刷脸安防,是不是以后还可以刷脸匹配男女 ...

  2. MFC 三种消息

    在MFC应用程序中传输的消息有三种类型:窗口消息.命令消息和控件通知. (1)窗口消息:WM_XXX 窗口消息(Window Message)一般与窗口的内部运作有关,如:创建窗口.绘制窗口和销毁窗口 ...

  3. Android开发进阶从小工到专家之性能优化

  4. What you should know about .so files

    In its early days, the Android OS was pretty much supporting only one CPU architecture: ARMv5.Do you ...

  5. cout快捷转换进制

    cout<<hex<<i<<endl; //输出十六进制数 cout<<oct<<i<<endl; //输出八进制数 cout& ...

  6. jenkins - svn: E170001报错的原因以及解决方案

    1. 什么问题What? 使用Jenkins配置的svn拉取项目,Jenkins报错:svn: E170001; Your credentials to connect to the reposito ...

  7. 传真AT指令部分(参考)

    不知道下面的命令是不是通用的,如果有尝试过的师兄给我个回复!! 列出了您的MODEM能理解的传真 AT 命令.每个命令描述包括命令名称.解释和相关参数. 传真命令 命令 描述 +F<comman ...

  8. NHibernate.3.0.Cookbook第一章第六节Handling versioning and concurrency的翻译

    NHibernate.3.0.Cookbook第一章第六节Handling versioning and concurrency的翻译   第一章第二节Mapping a class with XML ...

  9. 【POJ2154】Color Pólya定理+欧拉函数

    [POJ2154]Color 题意:求用$n$种颜色染$n$个珠子的项链的方案数.在旋转后相同的方案算作一种.答案对$P$取模. 询问次数$\le 3500$,$n\le 10^9,P\le 3000 ...

  10. Docker 利用registry创建私有仓库

    一.Docker-registry镜像 下载地址 官方镜像下载比较慢,因为人品问题一直下载不成功,所以选择了国内的镜像. daocloud:   https://hub.daocloud.io/ 还有 ...