P3216 [HNOI2011]数学作业 (矩阵快速幂)
P3216 [HNOI2011]数学作业
题目描述
小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题:
给定正整数 NN 和 MM ,要求计算 Concatenate (1 .. N) Concatenate(1..N) ModMod MM 的值,其中 Concatenate (1 .. N) Concatenate(1..N) 是将所有正整数 1, 2, …, N1,2,…,N 顺序连接起来得到的数。例如, N = 13N=13 , Concatenate (1 .. N)=12345678910111213Concatenate(1..N)=12345678910111213 .小C 想了大半天终于意识到这是一道不可能手算出来的题目,于是他只好向你求助,希望你能编写一个程序帮他解决这个问题。
输入输出格式
输入格式:
从文件input.txt中读入数据,输入文件只有一行且为用空格隔开的两个正整数N和M,其中30%的数据满足 1≤N≤10000001≤N≤1000000 ;100%的数据满足 1≤N≤10^{18}1≤N≤$ 10^18 \(
且 1≤M≤\) 10^9 \(1≤M≤1\) 0^9 $
.
输出格式:
输出文件 output.txt 仅包含一个非负整数,表示 Concatenate (1 .. N)Concatenate(1..N) ModMod MM 的值。
输入输出样例
输入样例#1:
13 13
输出样例#1:
4
递推式容易得到:$$ f[i+1]=f[i]*10^{k}+i+1 $$
范围 $ n<=10^{18} $
线性算法肯定TLE,那就考虑log的算法(快速幂或者倍增)
考虑把递推式转换成矩阵
递推式有三项
经验告诉我们,也许要用到\(3*3\)的矩阵
经过一系列 碰数,凑数,计算
我们得到矩阵
\begin{pmatrix} f[n],n,1 \end{pmatrix} \times \begin{bmatrix} 10^{k},0,0\\1,1,0\\1,1,1 \end{bmatrix} \]
从而可以得到
=\begin{pmatrix} f[1],1,1 \end{pmatrix} \times \begin{bmatrix} 10^{k},0,0\\1,1,0\\1,1,1\end{bmatrix}^{n-1}\]
ps:k是位数
k虽然是不确定的,但k的范围却很小 <=18
所以分开做就可以了
#include <iostream>
#include <cstdio>
#include <cstring>
#define ll long long
using namespace std;
ll n,mod;
struct node {
ll m[4][4];
} ans,ss,a;
node mul(node x,node y) {
node c= {};
for(int i=1; i<=3; ++i)
for(int j=1; j<=3; ++j)
for(int k=1; k<=3; ++k)
c.m[i][j]=(c.m[i][j]+(x.m[i][k]*y.m[k][j])%mod)%mod;
return c;
}
void fpow(ll p) {
while(p) {
if(p&1) ans=mul(ans,ss);
ss=mul(ss,ss);
p>>=1;
}
}
int main() {
//全部开long long不要质疑
cin>>n>>mod;
ans.m[1][3]=a.m[1][1]=a.m[2][1]=a.m[2][2]=a.m[3][1]=a.m[3][2]=a.m[3][3]=1;
for(ll i=1,j; i<=n; i=j+1) {
j=i*10-1;
if(j>n) j=n;
a.m[1][1]=a.m[1][1]*(ll)10%mod;
ss=a;
fpow(j-i+1);
}
printf("%lld\n",ans.m[1][1]%mod);
return 0;
}
自己还是太弱,最后处理菜的要死
P3216 [HNOI2011]数学作业 (矩阵快速幂)的更多相关文章
- BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )
BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...
- [HNOI2011]数学作业 矩阵快速幂 BZOJ 2326
题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 NNN 和 MMM ,要求计算Concatenate(1..N) Concatenate (1 .. N) ...
- 洛谷P3216 [HNOI2011] 数学作业 [矩阵加速,数论]
题目传送门 数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N和 M,要求计算 Concatenate (1 .. N)Mod M 的值,其中 C ...
- [luogu P3216] [HNOI2011]数学作业
[luogu P3216] [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 ...
- [ An Ac a Day ^_^ ] hdu 4565 数学推导+矩阵快速幂
从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了 ...
- P3216 [HNOI2011]数学作业
题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算Concatenate (1 .. N) Mod M 的值,其中 Concatenat ...
- [HNOI2011]数学作业 --- 矩阵优化
[HNOI2011]数学作业 题目描述: 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算\(Concatenate(1..N)\; Mod\; ...
- 洛谷P3216 [HNOI2011]数学作业
题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenat ...
- 2018.09.26 bzoj5221: [Lydsy2017省队十连测]偏题(数学推导+矩阵快速幂)
传送门 由于没有考虑n<=1的情况T了很久啊. 这题很有意思啊. 考试的时候根本不会,骗了30分走人. 实际上变一个形就可以了. 推导过程有点繁杂. 直接粘题解上的请谅解. 不得不说这个推导很妙 ...
随机推荐
- 01 - nginx - 安装、配置文件、默认网站、虚拟主机
一.运维: . 介绍服务器. 服务器逻辑: 服务器选择 操作系统 部署逻辑 业务环境部署逻辑 业务部署图 软件部署文档 日常维护文档 测试 开发上传代码到源码系统 上线 - 测服务器,内测 预发布测试 ...
- VUX
1.mapState 2.mapGetters 3. 4. 当你的操作行为中含有异步操作,比如向后台发送请求获取数据,就需要使用action的dispatch去完成.其他使用commit即可. 举个例 ...
- Miller_Rabbin算法判断大素数,Pollard_rho算法进行质因素分解
Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法.它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1.也就是对于所有小于p的正整数a来说 ...
- HTTP 教程
HTTP 简介 HTTP协议(HyperText Transfer Protocol,超文本传输协议)是因特网上应用最为广泛的一种网络传输协议,所有的WWW文件都必须遵守这个标准. HTTP是一个基于 ...
- em和px比较
1em=16px. em具有继承性. 如果定义了 body{font-size=12px;} #title{font-siez=2.6em;} 而id=title恰好在body里面,那么,id=tit ...
- Tesseract-OCR 训练过程 V3.02
软件: jTessBoxEditor Version 0.9 (30 April 2013) Tesseract-OCR win32 v3.02 with Leptonica 训练步骤: 1. ...
- Locust性能测试1-环境准备与基本使用
前言 提到性能测试,大部分小伙伴想到的就是LR和jmeter这种工具,小编一直不太喜欢写这种工具类的东西,我的原则是能用代码解决的问题,尽量不去用工具. python里面也有一个性能测试框架Locus ...
- 集合框架—HashMap
HashMap提供了三个构造函数: HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap. HashMap(int ini ...
- Codeforces 1144G Two Merged Sequences
题意: 将一个序列分成两个序列,两个序列中元素的相对顺序保持和原序列不变,使得分出的两个序列一个严格上升,一个严格下降. 思路: 我们考虑每个元素都要进入其中一个序列. 那么我们维护一个上升序列和一个 ...
- 20154312 曾林 Exp3 免杀原理与实践
20154312 曾林 0.写在前面 AV厂商检测恶意软件的方式主流的就三种: 基于特征码的检测 启发式恶意软件检测 基于行为的恶意软件检测 我们要做的就是让我们的恶意软件没法被这三种方式找到,也就是 ...