LinearRegression fits a linear model with coefficients  to minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathematically it solves a problem of the form:

原理最小化:   

 
>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> clf.fit ([[, ], [, ], [, ]], [, , ])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=, normalize=False)
>>> clf.coef_
array([ 0.5, 0.5])

完整代理例子

#!/usr/bin/env python
# coding=utf-8 import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets,linear_model print(__doc__) # load dataset
diabetes = datasets.load_diabetes() # use only one feature
diabetes_x = diabetes.data[:,np.newaxis]
diabetes_x_temp = diabetes_x[:,:,2] # split data into training/testing sets
diabetes_x_train = diabetes_x_temp[:-20]
diabetes_x_test = diabetes_x_temp[-20:] # split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:] # create linear regression object
regr = linear_model.LinearRegression()
regr.fit(diabetes_x_train,diabetes_y_train) # the coefficients
print('coefficients: \n ',regr.coef_) # the mean square error
print("Residual sum of squares:%.2f" % np.mean((regr.predict(diabetes_x_test)-diabetes_y_test)**2)) # Plot outputs
plt.scatter(diabetes_x_test,diabetes_y_test,color='black')
plt.plot(diabetes_x_test,regr.predict(diabetes_x_test),color='blue',linewidth=3) plt.title("linear_model example")
plt.xlabel("X")
plt.ylabel("Y")
# plt.xticks(())
# plt.yticks(()) plt.show()

转自:

http://scikit-learn.org/dev/auto_examples/linear_model/plot_ols.html#example-linear-model-plot-ols-py

sklearn 线性模型使用入门的更多相关文章

  1. sklearn.linear_model.LinearRegresion学习

    sklearn线性模型之线性回归 查看官网 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearR ...

  2. Kaggle实战之二分类问题

    0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...

  3. Kaggle实战分类问题2

    Kaggle实战之二分类问题 0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 “尽管新技术新算法层出不穷,但是掌握 ...

  4. python常用库 - NumPy 和 sklearn入门

    Numpy 和 scikit-learn 都是python常用的第三方库.numpy库可以用来存储和处理大型矩阵,并且在一定程度上弥补了python在运算效率上的不足,正是因为numpy的存在使得py ...

  5. sklearn 快速入门教程

    1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也 ...

  6. tensorflow实现线性模型和sklearn的线性模型比较

    自己用tensorflow实现了linear模型,但是和sklearn提供的模型效果相比,实验结果差了很多,所以尝试了修改优化算法,正则化,损失函数和归一化,记录尝试的所有过程和自己的实验心得. im ...

  7. 数据挖掘入门系列教程(九)之基于sklearn的SVM使用

    目录 介绍 基于SVM对MINIST数据集进行分类 使用SVM SVM分析垃圾邮件 加载数据集 分词 构建词云 构建数据集 进行训练 交叉验证 炼丹术 总结 参考 介绍 在上一篇博客:数据挖掘入门系列 ...

  8. sklearn机器学习算法--线性模型

    线性模型 用于回归的线性模型 线性回归(普通最小二乘法) 岭回归 lasso 用于分类的线性模型 用于多分类的线性模型 1.线性回归 LinearRegression,模型简单,不同调节参数 #2.导 ...

  9. 机器学习入门之sklearn介绍

    SKlearn简介 scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包.它通过NumPy, SciPy和Matplotlib等python数值计算的库实现 ...

随机推荐

  1. Java Iterator的一般用法

    Iterator(迭代器) 迭代器是一种设计模式,它是一个对象,它可以遍历并选择序列中的对象,而开发人员不需要了解该序列的底层结构.迭代器通常被称为“轻量级”对象,因为创建它的代价小. Java中的I ...

  2. c++ json 详解

    一. 使用jsoncpp解析json Jsoncpp是个跨平台的开源库,首先从http://jsoncpp.sourceforge.net/上下载jsoncpp库源码,我下载的是v0.5.0,压缩包大 ...

  3. PNotes – 目前最优秀的桌面便签软件 - imsoft.cnblogs

    Pnotes: 下载链接: http://pan.baidu.com/s/1o6FK4SM 密码: n7il 便携版,包含中文语音包,包含十几种合适的皮肤. 更多信息:小众软件 http://www. ...

  4. Codeforces 208A:Dubstep(字符串)

    题目链接:http://codeforces.com/problemset/problem/208/A 题意 给出一个字符串,将字符串中的WUB给删去,如果两个字母间有WUB,则这两个字母用空格隔开 ...

  5. 在 Windows 10 中开启移动 WLAN 热点

    本文将介绍如何在 Windows 10 中开启移动 Wi-Fi 热点. This post is written in multiple languages. Please select yours: ...

  6. 一致性哈希算法(Consistent Hashing Algorithm)

    一致性哈希算法(Consistent Hashing Algorithm) 浅谈一致性Hash原理及应用   在讲一致性Hash之前我们先来讨论一个问题. 问题:现在有亿级用户,每日产生千万级订单,如 ...

  7. Battle City 优先队列+bfs

    Many of us had played the game "Battle city" in our childhood, and some people (like me) e ...

  8. (8)propetry装饰器

    propetry是一个内置函数,用来将一个功能伪装成一个数据属性 property将一个方法伪装成一个数据属性class People: def __init__(self,name,height,w ...

  9. 玩转ptrace (一)

    转自http://www.cnblogs.com/catch/p/3476280.html [本文翻译自这里: http://www.linuxjournal.com/article/6100?pag ...

  10. hadoop之 exceeds the limit of concurrent xcievers处理

    dfs.datanode.max.transfer.threads: 默认 4096 < 2.0之前该参数为dfs.datanode.max.xcievers >解释:Specifies ...