sklearn 线性模型使用入门
LinearRegression
fits a linear model with coefficients to minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathematically it solves a problem of the form:
原理最小化:
>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> clf.fit ([[, ], [, ], [, ]], [, , ])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=, normalize=False)
>>> clf.coef_
array([ 0.5, 0.5])
完整代理例子
#!/usr/bin/env python
# coding=utf-8 import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets,linear_model print(__doc__) # load dataset
diabetes = datasets.load_diabetes() # use only one feature
diabetes_x = diabetes.data[:,np.newaxis]
diabetes_x_temp = diabetes_x[:,:,2] # split data into training/testing sets
diabetes_x_train = diabetes_x_temp[:-20]
diabetes_x_test = diabetes_x_temp[-20:] # split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:] # create linear regression object
regr = linear_model.LinearRegression()
regr.fit(diabetes_x_train,diabetes_y_train) # the coefficients
print('coefficients: \n ',regr.coef_) # the mean square error
print("Residual sum of squares:%.2f" % np.mean((regr.predict(diabetes_x_test)-diabetes_y_test)**2)) # Plot outputs
plt.scatter(diabetes_x_test,diabetes_y_test,color='black')
plt.plot(diabetes_x_test,regr.predict(diabetes_x_test),color='blue',linewidth=3) plt.title("linear_model example")
plt.xlabel("X")
plt.ylabel("Y")
# plt.xticks(())
# plt.yticks(()) plt.show()
转自:
http://scikit-learn.org/dev/auto_examples/linear_model/plot_ols.html#example-linear-model-plot-ols-py
sklearn 线性模型使用入门的更多相关文章
- sklearn.linear_model.LinearRegresion学习
sklearn线性模型之线性回归 查看官网 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearR ...
- Kaggle实战之二分类问题
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...
- Kaggle实战分类问题2
Kaggle实战之二分类问题 0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 “尽管新技术新算法层出不穷,但是掌握 ...
- python常用库 - NumPy 和 sklearn入门
Numpy 和 scikit-learn 都是python常用的第三方库.numpy库可以用来存储和处理大型矩阵,并且在一定程度上弥补了python在运算效率上的不足,正是因为numpy的存在使得py ...
- sklearn 快速入门教程
1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也 ...
- tensorflow实现线性模型和sklearn的线性模型比较
自己用tensorflow实现了linear模型,但是和sklearn提供的模型效果相比,实验结果差了很多,所以尝试了修改优化算法,正则化,损失函数和归一化,记录尝试的所有过程和自己的实验心得. im ...
- 数据挖掘入门系列教程(九)之基于sklearn的SVM使用
目录 介绍 基于SVM对MINIST数据集进行分类 使用SVM SVM分析垃圾邮件 加载数据集 分词 构建词云 构建数据集 进行训练 交叉验证 炼丹术 总结 参考 介绍 在上一篇博客:数据挖掘入门系列 ...
- sklearn机器学习算法--线性模型
线性模型 用于回归的线性模型 线性回归(普通最小二乘法) 岭回归 lasso 用于分类的线性模型 用于多分类的线性模型 1.线性回归 LinearRegression,模型简单,不同调节参数 #2.导 ...
- 机器学习入门之sklearn介绍
SKlearn简介 scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包.它通过NumPy, SciPy和Matplotlib等python数值计算的库实现 ...
随机推荐
- Java Iterator的一般用法
Iterator(迭代器) 迭代器是一种设计模式,它是一个对象,它可以遍历并选择序列中的对象,而开发人员不需要了解该序列的底层结构.迭代器通常被称为“轻量级”对象,因为创建它的代价小. Java中的I ...
- c++ json 详解
一. 使用jsoncpp解析json Jsoncpp是个跨平台的开源库,首先从http://jsoncpp.sourceforge.net/上下载jsoncpp库源码,我下载的是v0.5.0,压缩包大 ...
- PNotes – 目前最优秀的桌面便签软件 - imsoft.cnblogs
Pnotes: 下载链接: http://pan.baidu.com/s/1o6FK4SM 密码: n7il 便携版,包含中文语音包,包含十几种合适的皮肤. 更多信息:小众软件 http://www. ...
- Codeforces 208A:Dubstep(字符串)
题目链接:http://codeforces.com/problemset/problem/208/A 题意 给出一个字符串,将字符串中的WUB给删去,如果两个字母间有WUB,则这两个字母用空格隔开 ...
- 在 Windows 10 中开启移动 WLAN 热点
本文将介绍如何在 Windows 10 中开启移动 Wi-Fi 热点. This post is written in multiple languages. Please select yours: ...
- 一致性哈希算法(Consistent Hashing Algorithm)
一致性哈希算法(Consistent Hashing Algorithm) 浅谈一致性Hash原理及应用 在讲一致性Hash之前我们先来讨论一个问题. 问题:现在有亿级用户,每日产生千万级订单,如 ...
- Battle City 优先队列+bfs
Many of us had played the game "Battle city" in our childhood, and some people (like me) e ...
- (8)propetry装饰器
propetry是一个内置函数,用来将一个功能伪装成一个数据属性 property将一个方法伪装成一个数据属性class People: def __init__(self,name,height,w ...
- 玩转ptrace (一)
转自http://www.cnblogs.com/catch/p/3476280.html [本文翻译自这里: http://www.linuxjournal.com/article/6100?pag ...
- hadoop之 exceeds the limit of concurrent xcievers处理
dfs.datanode.max.transfer.threads: 默认 4096 < 2.0之前该参数为dfs.datanode.max.xcievers >解释:Specifies ...