1, splay的一些基本操作.

  • 使用前要插入$-INF,+INF$保证每个点的前驱后继存在.
  • $get$函数在$x$存在时, 调用后, 根为$x$, 否则根为$x$的前驱或后继
const int N = 1e6+10;
int n, tot, rt, sz;
struct {
int cnt,sz,fa,ch[2],v;
} tr[N];
void pu(int x) {
tr[x].sz=tr[tr[x].ch[0]].sz+tr[tr[x].ch[1]].sz+tr[x].cnt;
}
void rot(int x) {
int y=tr[x].fa,z=tr[y].fa;
int f=tr[y].ch[1]==x;
tr[z].ch[tr[z].ch[1]==y]=x,tr[x].fa=z;
tr[y].ch[f]=tr[x].ch[f^1],tr[tr[x].ch[f^1]].fa=y;
tr[x].ch[f^1]=y,tr[y].fa=x,pu(y);
}
void splay(int x, int s=0) {
for (int y; y=tr[x].fa,y!=s; rot(x)) if (tr[y].fa!=s) {
rot((tr[y].ch[0]==x)==(tr[tr[y].fa].ch[0]==y)?y:x);
}
if (!s) rt=x;
}
void get(int x) {
int cur=rt;
while (x!=tr[cur].v&&tr[cur].ch[x>tr[cur].v]) cur=tr[cur].ch[x>tr[cur].v];
splay(cur);
}
void insert(int x) {
int cur=rt,p=0;
while (cur&&x!=tr[cur].v) p=cur,cur=tr[cur].ch[x>tr[cur].v];
if (cur) ++tr[cur].cnt;
else {
cur=++tot;
if (p) tr[p].ch[x>tr[p].v]=cur,tr[cur].fa=p;
tr[cur].v=x,tr[cur].sz=tr[cur].cnt=1;
}
splay(cur);
}
int pre(int x) {
get(x);
if (tr[rt].v<=x) return rt;
int cur=tr[rt].ch[0];
while (tr[cur].ch[1]) cur=tr[cur].ch[1];
return cur;
}
int nxt(int x) {
get(x);
if (tr[rt].v>=x) return rt;
int cur=tr[rt].ch[1];
while (tr[cur].ch[0]) cur=tr[cur].ch[0];
return cur;
}
void erase(int x) {
int s1=pre(x-1),s2=nxt(x+1);
splay(s1),splay(s2,s1);
int &cur=tr[s2].ch[0];
if (tr[cur].cnt>1) --tr[cur].cnt,splay(cur);
else cur=0;
}

2, splay插入区间,区间翻转等操作.

这时候splay维护的是每个下标对应的权值, 下标通过第k大来查询

  • 使用前要调用$build(a,0,rt,1,2);$
const int N = 1e6+10;
int n, rt, tot;
int a[N];
struct _ {
int sz,v,ch[2],fa,rev;
} tr[N];
void pu(int o) {
tr[o].sz=tr[tr[o].ch[0]].sz+tr[tr[o].ch[1]].sz+1;
}
void pd(int o) {
if (tr[o].rev) {
swap(tr[o].ch[0],tr[o].ch[1]);
tr[tr[o].ch[0]].rev^=1;
tr[tr[o].ch[1]].rev^=1;
tr[o].rev=0;
}
}
void rot(int x) {
int y=tr[x].fa,z=tr[y].fa;
int f=tr[y].ch[1]==x;
tr[z].ch[tr[z].ch[1]==y]=x,tr[x].fa=z;
tr[y].ch[f]=tr[x].ch[f^1],tr[tr[x].ch[f^1]].fa=y;
tr[x].ch[f^1]=y,tr[y].fa=x,pu(y);
}
void splay(int x, int s=0) {
for (int y; y=tr[x].fa,y!=s; rot(x)) if (tr[y].fa!=s) {
rot((tr[y].ch[0]==x)==(tr[tr[y].fa].ch[0]==y)?y:x);
}
if (!s) rt=x;
}
int find(int x, int k) {
pd(x); int s=tr[tr[x].ch[0]].sz;
if (k==s+1) return x;
if (k<=s) return find(tr[x].ch[0],k);
return find(tr[x].ch[1],k-s-1);
}
void build(int *a, int f, int &o, int l, int r) {
if (l>r) return;
o = ++tot;
tr[o].v = a[mid], tr[o].fa = f;
build(s,o,tr[o].ch[0],l,mid-1);
build(s,o,tr[o].ch[1],mid+1,r);
pu(o);
}
void ins(int x, int n) {
build(a,0,p,1,n);
int s1=find(rt,x-1), s2=find(rt,x);
splay(s1),splay(s2,s1);
tr[s2].ch[0]=p,tr[p].fa=s2;
pu(p),pu(s2);
}
void del(int x, int n) {
int s1=find(rt,x-1), s2=find(rt,x+n);
splay(s1),splay(s2,s1);
tr[s2].ch[0]=0;
pu(s1),pu(s2);
}
void reverse(int x, int n) {
int s1=find(rt,x-1), s2=find(rt,x+n);
splay(s1),splay(s2,s1);
tr[tr[s2].ch[0]].rev^=1;
}

splay板子的更多相关文章

  1. [bzoj] 1588 营业额统计 || Splay板子题

    原题 给出一个n个数的数列ai ,对于第i个元素ai定义\(fi=min(|ai-aj|) (1<=j<i)\),f1=a1,求\(/sumfi\) Splay板子题. Splay讲解:h ...

  2. POJ - 3481 splay板子

    Double Queue 默写splay板子 很多细节问题... #include<cstdio> #include<iostream> using namespace std ...

  3. 个人整理的数组splay板子,指针的写的太丑了就不放了。。

    splay的板子.. 由于被LCT榨干了..所以昨天去学了数组版的splay,现在整理一下板子.. 以BZOJ3224和3223为例题..暂时只有这些,序列的话等有时间把维修序列给弄上来!! BZOJ ...

  4. bzoj3224 splay板子

    开始学习新知识:splay——tree 是个板子题,学习splay可以看博客 https://blog.csdn.net/Clove_unique/article/details/50630280 # ...

  5. BZOJ 3224 Tyvj 1728 普通平衡树 | Splay 板子+SPlay详细讲解

    下面给出Splay的实现方法(复杂度证明什么的知道是 nlogn 就可以啦) 首先对于一颗可爱的二叉查找树,是不能保证最坏nlogn的复杂度(可以想象把一个升序序列插入) (二叉查找树保证左子树元素大 ...

  6. BZOJ[NOI2004]郁闷的出纳员 | Splay板子题

    题目: 洛谷也能评测....还有我wa了10多次的记录233 题解: 不要想得太复杂,搞一个全局变量记录一下工资的改变量Delta,这样可以等询问的时候就输出val+Delta,然后插入的时候插入x- ...

  7. P3369 【模板】普通平衡树(splay)

    P3369 [模板]普通平衡树 就是不用treap splay板子,好好背吧TAT #include<iostream> #include<cstdio> #include&l ...

  8. 【题解】 [HNOI2004]宠物收养场(Splay)

    懒得复制,戳我戳我 Solution: \(Splay\)板子,注意交换的地方,然后就是注意不要越界node[x],应该是\(node[now]\),其次就是数组可以开大点 Code: //It is ...

  9. 【题解】 [HNOI2002]营业额统计 (Splay)

    懒得复制,戳我戳我 Solution: \(Splay\)板子题,注意可以选择相等大小 Code: //It is coded by Ning_Mew on 4.10 #include<bits ...

随机推荐

  1. PageRank算法与TextRank算法详解

    PageRank算法: 该算法本质上属于有向带权图. 对于某个互联网网页A来说,该网页PageRank的计算基于以下两个基本假设: 数量假设:在Web图模型中,如果一个页面节点接收到的其他网页指向的入 ...

  2. Centos 更改系统时间

    .date //查看本地 .hwclock --show //查看硬件的时间 .如果硬件的时间是对不上,那就对硬件的时间进行修改 .hwclock --set --date '2222-22-22 2 ...

  3. [省选模拟]array

    这题真是太神了! 考试的时候冲着四十分写了个$O(\frac{N^3logN}{32})$的制杖算法. 然后就狠狠的T掉了.如果没有充分的理解单调性和应用单调性就只有10分的傻逼分拿了. 首先考虑枚举 ...

  4. 20145220韩旭飞《网络对抗》Exp8 Web基础

    20145220韩旭飞<网络对抗>Exp8 Web基础 Web前端:HTML基础 首先,我们的Web开发是基于Apache服务器进行的,所以对于Apache的基本操作我们是应该要掌握的,对 ...

  5. msf辅助模块的应用——20145301

    msf辅助模块的应用 实验步骤 创建msf所需的数据库 service postgresql start msfdb start 开启msf,输入命令 use auxiliary/scanner/di ...

  6. Vue 动态图片加载路径问题和解决方法

    最近在做一个树形结构的组件,使用了Vue和element UI中el-tree组件.因为树中每个节点都需要显示一个图标图片,并且需要根据后台传入的数据类型动态地显示,所以图片的路径需要动态地加载.下面 ...

  7. Delphi XE5 for Android (一)

    Delphi XE5 出来了,支持Android的开发,试用了一下,有几个问题: 1.只支持ARM7的设备,不支持Inter设备.手上刚好有一个华硕K004,很遗憾用不上,只能用手机试了. 2.要支持 ...

  8. Python3基础 str format 输出花括号{}

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  9. git下载速度太慢【学习笔记】

    使用了sshFQ的伙伴添加这个配置下载速度有极大的提升. git config --global http.proxy 'socks5://127.0.0.1:1080'

  10. P4879 ycz的妹子

    思路 让你干啥你就干啥呗 查询第x个妹子就get一下再修改 这里稳一点就维护了三个东西,也许两个也可以 代码 #include <iostream> #include <cstdio ...