MT【63】证明不是周期函数
证明$f(x)=sinx^2$不是周期函数.
反证:假设是周期函数,周期为$T,T>0$.
$$f(0)=f(T)\Rightarrow sinT^2=0\Rightarrow T^2=k_1\pi,k_1\in N^{*}$$
$$f(\sqrt{2}T)=f(\sqrt{2}T+T)\Rightarrow sin2T^2=sin(\sqrt{2}T+T)^2$$
$$\Rightarrow 0=sin2k_1\pi=sin(\sqrt{2}T+T)^2$$
$$\Rightarrow(\sqrt{2}T+T)^2=k_2\pi,k_2\in N^{*}$$
$$\Rightarrow (\sqrt{2}+1)^2=\frac{k_2}{k_1}$$
等式左边为无理数$\ne$等式右边为有理数,矛盾,故假设不成立。$\therefore f(x)=sinx^2$不是周期函数.
评:此类证明非周期的题,套路基本都是反证,取一些特殊值,得出矛盾.
MT【63】证明不是周期函数的更多相关文章
- 深入理解Plasma(四)Plasma Cash
这一系列文章将围绕以太坊的二层扩容框架 Plasma,介绍其基本运行原理,具体操作细节,安全性讨论以及未来研究方向等.本篇文章主要介绍在 Plasma 框架下的项目 Plasma Cash. 在上一篇 ...
- 密码学笔记-一段base64wp
CTF--练习平台 例题: 一段Base64 flag格式:flag{xxxxxxxxxxxxx} 附件: base64.txt 1.base64解码:http://base64.xpcha.com/ ...
- MT【206】证明整数数列
已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...
- MT【39】构造二次函数证明
这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...
- MT【33】证明琴生不等式
解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.
- MT【19】舒尔不等式设计理念及证明
评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.
- MT【18】幂平均不等式的证明
评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深 刻的认识.
- MT【16】证明无理数(2)
证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...
- MT【15】证明无理数(1)
证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...
随机推荐
- 使用Windows API进行串口编程
使用Windows API进行串口编程 串口通信一般分为四大步:打开串口->配置串口->读写串口->关闭串口,还可以在串口上监听读写等事件.1.打开和关闭串口Windows中串口 ...
- awk 内置函数列表
1.gsub要在整个记录中替换一个字符串为另一个,使用正则表达式格式,/目标模式/,替换模式/.例如改变学生序号4842到4899:$ awk 'gsub('4842/, 4899) {print $ ...
- CF613D Kingdom and its Cities 虚树
传送门 $\sum k \leq 100000$虚树套路题 设$f_{i,0/1}$表示处理完$i$以及其所在子树的问题,且处理完后$i$所在子树内是否存在$1$个关键点满足它到$i$的路径上不存在任 ...
- 总结几个常用的系统安全设置(含DenyHosts)
1)禁止系统响应任何从外部/内部来的ping请求攻击者一般首先通过ping命令检测此主机或者IP是否处于活动状态如果能够ping通 某个主机或者IP,那么攻击者就认为此系统处于活动状态,继而进行攻击或 ...
- Flask之WSGI:Werkzeug
WSGI 一个Web应用的本质就是: 浏览器发送一个HTTP请求: 服务器收到请求,生成一个HTML文档: 服务器把HTML文档作为HTTP响应的Body发送给浏览器: 浏览器收到HTTP响应,从HT ...
- sixsix团队M2阶段Postmortem
设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 要解决的问题:目前外卖网站比较多,用户很难快速找到合适的外卖,我们集合各个网站的外卖信息,为用户提 ...
- 20135337——Linux实践二:模块
一.编译&生成&测试&删除 1.编写模块代码,查看如下 gedit 1.c(编写) cat 1.c(查看) MODULE_AUTHOR("Z") MODUL ...
- 五子棋游戏SRS文档
SRS技术文档,包括对SRS的解释说明.SRS描述规范.软件需求规格说明书(SRS,Software Requirement Specification)是为了软件开发系统而编写的,主要用来描 ...
- wuziqi
五子棋结对人崔保雪的博客连接http://www.cnblogs.com/nuoxiaomi/ 题目简介 我们实现了一个五子棋的软件,该软件由初始化模块.下棋操作模块.人机对战模块.人人对 ...
- Rabbitmq vs. kafka
https://mp.weixin.qq.com/s/2i_9TWoF3TsJvG6Dj_75vw http://www.cnblogs.com/valor-xh/p/6348009.html htt ...