BZOJ4836 二元运算(分治FFT)
设A(n)为a中n的个数,B(n)为b中n的个数。如果只考虑加法显然是一个卷积,减法翻转一下也显然是一个卷积。
问题在于两者都有。容易想到分开处理。那么可以考虑分治。即对于值域区间[l,r],分别计算A[l,mid]和B[mid+1,r]的贡献及A[mid+1,r]和B[l,mid]的贡献,然后再递归处理[l,mid]和[mid+1,r]。一定程度上类似于cdq分治。
注意结果可能爆int,用NTT的话不太方便。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 270000
const double PI=3.14159265358979324;
struct complex
{
double x,y;
complex operator +(const complex&a) const
{
return (complex){x+a.x,y+a.y};
}
complex operator -(const complex&a) const
{
return (complex){x-a.x,y-a.y};
}
complex operator *(const complex&a) const
{
return (complex){x*a.x-y*a.y,x*a.y+y*a.x};
}
}c[N],d[N];
int T,n,m,q,a[N],b[N],r[N];
long long f[N];
void DFT(int n,complex *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
complex wn=(complex){cos(*PI/i),p*sin(*PI/i)};
for (int j=;j<n;j+=i)
{
complex w=(complex){,};
for (int k=j;k<j+(i>>);k++,w=w*wn)
{
complex x=a[k],y=w*a[k+(i>>)];
a[k]=x+y,a[k+(i>>)]=x-y;
}
}
}
}
void mul(int n,complex *a,complex *b)
{
for (int i=;i<n;i++) r[i]=(r[i>>]>>)|(i&)*(n>>);
for (int i=;i<n;i++) a[i].y=a[i].x-b[i].x,a[i].x=a[i].x+b[i].x;
DFT(n,a,);
for (int i=;i<n;i++) a[i]=a[i]*a[i];
DFT(n,a,-);
for (int i=;i<n;i++) a[i].x=a[i].x/n/;
}
void solve(int l,int r)
{
if (l==r) {f[]+=1ll*a[l]*b[l];return;}
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int t=;while (t<r-l+) t<<=;
for (int i=;i<t;i++) c[i].x=c[i].y=d[i].x=d[i].y=;
for (int i=l;i<=mid;i++) c[i-l].x=a[i];
for (int i=mid+;i<=r;i++) d[i-mid-].x=b[i];
mul(t,c,d);
for (int i=l+mid+;i<=mid+r;i++) f[i]+=(long long)(c[i-l-mid-].x+0.5);
for (int i=;i<t;i++) c[i].x=c[i].y=d[i].x=d[i].y=;
for (int i=mid+;i<=r;i++) c[i-mid-].x=a[i];
for (int i=l;i<=mid;i++) d[mid-i].x=b[i];
mul(t,c,d);
for (int i=;i<=r-l;i++) f[i]+=(long long)(c[i-].x+0.5);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4836.in","r",stdin);
freopen("bzoj4836.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read(),m=read(),q=read();
memset(f,,sizeof(f));
memset(a,,sizeof(a));memset(b,,sizeof(b));
int x=,y;
for (int i=;i<=n;i++) x=max(y=read(),x),a[y]++;
for (int i=;i<=m;i++) x=max(y=read(),x),b[y]++;
solve(,x);
while (q--) printf(LL,f[read()]);
}
return ;
}
BZOJ4836 二元运算(分治FFT)的更多相关文章
- [BZOJ4836]二元运算(分治FFT)
4836: [Lydsy1704月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 578 Solved: 202[Submit][Stat ...
- 【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT
题目描述 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使得 a_ ...
- bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数
[Lydsy1704月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 577 Solved: 201[Submit][Status][Di ...
- 【bzoj4836】二元运算 分治FFT
Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...
- bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT
4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MB Description 定义二元运算 opt 满足 现在给定一 ...
- BZOJ 4836: [Lydsy1704月赛]二元运算 分治FFT
Code: #include<bits/stdc++.h> #define ll long long #define maxn 500000 #define setIO(s) freope ...
- BZOJ4836 [Lydsy1704月赛]二元运算 分治 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8830036.html 题目传送门 - BZOJ4836 题意 定义二元运算$opt$满足 $$x\ opt\ y ...
- BZOJ4836: [Lydsy1704月赛]二元运算【分治FFT】【卡常(没卡过)】
Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
随机推荐
- Docker中运行Dockerfile时报错“cannot allocate memory”
今天运行Dockerfile脚本时报错了,现记录下来: Step / : RUN -bin/myagent symlink /proc/mounts /var/lib/docker/overlay/2 ...
- thymeleaf参考手册
1.创建 html <!DOCTYPE html><html xmlns:th="http://www.thymeleaf.org"></html&g ...
- java 基础01
标识符:字母,下划线和美元符号,数字组成大小写敏感,无长度限制 关键字: 数据类型
- Flask_admin 笔记六 modelView的内置方法
增加model后端Flask-Admin对与之配合的数据库模型做了一些假设. 如果要实现自己的数据库后端,并且Flask-Admin的模型视图仍可按预期工作,则应注意以下事项:1) 每一个model必 ...
- Docker环境编译时的错误记录
1)报错一docker-compose -f compose/app.yaml -f compose/backend.yaml -f compose/proxy.yaml build peatio b ...
- Nginx负载均衡中后端节点服务器健康检查的操作梳理
正常情况下,nginx做反向代理,如果后端节点服务器宕掉的话,nginx默认是不能把这台realserver踢出upstream负载集群的,所以还会有请求转发到后端的这台realserver上面,这样 ...
- DRBD详细解说及配置过程记录
一.DRBD介绍 DRBD(Distributed ReplicatedBlock Device)是一种基于软件的,无共享,分布式块设备复制的存储解决方案,在服务器之间的对块设备(硬盘,分区,逻辑卷等 ...
- MySQL的启动程序
1.mysqld: mysql server [root@test bin]# ./mysqld --user=mysql & [root@test bin]# ps ...
- Python_函数的镶嵌和作用域链_26
def max(a,b): return a if a>b else b def the_max(x,y,z): #函数的嵌套调用 c = max(x,y) return max(c,z) pr ...
- 《Linux内核分析》期终总结
作者:杨舒雯,原创作品转载请注明出处,<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 目录: 1.通过简 ...