嘟嘟嘟




题目有点坑,要你求的多少大阵指的是召唤kkk的大阵数 * lzn的大阵数,不是相加。




看到这个限制条件,显然要用生成函数推一推。

比如第一个条件“金神石的块数必须是6的倍数”,就是\(1 +x ^ 6 + x ^ {12} + \ldots\),也就是\(\frac{1 - x ^ {6n}}{1 - x ^ 6}\)。当\(x \in (-1, 1)\)时,就变成了\(\frac{1}{1 - x ^ 6}\)。

剩下的同理。

然后把这10个条件都乘起来,一顿化简,答案就是\(\frac{(n + 1) * (n + 2) * (n + 3) *(n + 4)}{24}\)。




本来想快乐的写高精,但是\(n = 1e5\)还非得用fft。

于是就写了一发,不开O2会TLE飞,开了后TLE最后一个点。然后把fft的预处理改成bin哥的写法后就过了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const db PI = acos(-1);
const int maxn = 4e6 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} char a1[maxn];
int n, m, a[maxn], b[maxn]; int len = 1;
struct Comp
{
db x, y;
In Comp operator + (const Comp& oth)const
{
return (Comp){x + oth.x, y + oth.y};
}
In Comp operator - (const Comp& oth)const
{
return (Comp){x - oth.x, y - oth.y};
}
In Comp operator * (const Comp& oth)const
{
return (Comp){x * oth.x - y * oth.y, x * oth.y + y * oth.x};
}
friend In void swap(Comp& a, Comp& b)
{
swap(a.x, b.x); swap(a.y, b.y);
}
}c[maxn], d[maxn], omg[maxn], inv[maxn];
int r[maxn];
In void init()
{
omg[0] = inv[0] = (Comp){1, 0};
omg[1] = inv[len - 1] = (Comp){cos(2 * PI / len), sin(2 * PI / len)};
for(int i = 2; i < len; ++i) omg[i] = inv[len - i] = omg[i - 1] * omg[1];
}
In void fft(Comp* a, Comp* omg)
{
for(int i = 0; i < len; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int l = 2; l <= len; l <<= 1)
{
int q = l >> 1;
for(Comp* p = a; p != a + len; p += l)
for(int i = 0; i < q; ++i)
{
Comp tp = omg[len / l * i] * p[i + q];
p[i + q] = p[i] - tp, p[i] = p[i] + tp;
}
}
} In void mul(int* a, int* b)
{
int tot = max(n, m); len = 1;
while(len < (tot << 1)) len <<= 1;
int lim = 0;
while((1 << lim) < len) ++lim;
for(int i = 0; i < len; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (lim - 1));
for(int i = 0; i < len; ++i) c[i] = d[i] = (Comp){0, 0};
for(int i = 0; i < n; ++i) c[i] = (Comp){a[i], 0};
for(int i = 0; i < m; ++i) d[i] = (Comp){b[i], 0};
init();
fft(c, omg), fft(d, omg);
for(int i = 0; i < len; ++i) c[i] = c[i] * d[i];
fft(c, inv);
for(int i = 0; i <= len; ++i) a[i] = 0;
for(int i = 0; i < len; ++i)
{
a[i] += (int)(c[i].x / len + 0.5);
if(a[i] >= 10) a[i + 1] += a[i] / 10, a[i] %= 10;
}
n = len;
while(n - 1 && !a[n - 1]) --n;
// for(int i = n - 1; i >= 0; --i) printf("%d", a[i]); enter;
}
In void add(int* a, int x, int& n)
{
a[0] += x;
for(int i = 0; i < n; ++i)
if(a[i] >= 10) a[i + 1] += a[i] / 10, a[i] %= 10;
else break;
++n;
while(n - 1 && !a[n - 1]) --n;
// for(int i = n - 1; i >= 0; --i) printf("%d", a[i]); enter;
}
In void div(int* a, int x)
{
static int ret[maxn];
reverse(a, a + n);
int tp = 0, cnt = 0;
for(int i = 0; i < n; ++i)
{
tp = tp * 10 + a[i];
ret[++cnt] = tp / x;
tp %= x;
}
int sta = 1;
while(sta < cnt && !ret[sta]) ++sta;
for(int i = sta; i <= cnt; ++i) write(ret[i]); enter;
} int main()
{
// freopen("random.in", "r", stdin);
// freopen("ac.out", "w", stdout);
scanf("%s", a1);
m = n = strlen(a1);
for(int i = 0; i < n; ++i) b[i] = a[i] = a1[n - i - 1] - '0';
add(a, 1, n); add(b, 1, m);
for(int i = 2; i <= 4; ++i)
{
add(b, 1, m);
mul(a, b);
}
div(a, 24);
return 0;
}

luogu P2000 拯救世界的更多相关文章

  1. luogu P2000 拯救世界 生成函数_麦克劳林展开_python

    模板题. 将所有的多项式按等比数列求和公式将生成函数压缩,相乘后麦克劳林展开即可. Code: n=int(input()) print((n+1)*(n+2)*(n+3)*(n+4)//24)

  2. [题解] Luogu P2000 拯救世界

    生成函数板子题...... 要写高精,还要NTT优化......异常dl 这个并不难想啊...... 一次召唤会涉及到\(10\)个因素,全部写出来,然后乘起来就得到了答案的生成函数,输出\(n\)次 ...

  3. 洛谷P2000 拯救世界(生成函数)

    题面 题目链接 Sol 生成函数入门题 至多为\(k\)就是\(\frac{1-x^{k+1}}{1-x}\) \(k\)的倍数就是\(\frac{1}{1-x^k}\) 化简完了就只剩下一个\(\f ...

  4. 【洛谷】P2000 拯救世界

    题解 小迪的blog : https://www.cnblogs.com/RabbitHu/p/9178645.html 请大家点推荐并在sigongzi的评论下面点支持谢谢! 掌握了小迪生成函数的有 ...

  5. Luogu 2000 拯救世界

    从胡小兔的博客那里过来的,简单记一下生成函数. 生成函数 数列$\{1, 1, 1, 1, \cdots\}$的生成函数是$f(x) = 1 + x + x^2 + x^3 + \cdots$,根据等 ...

  6. [洛谷P2000 拯救世界]

    生成函数版题. 考虑对于这些条件写出\(OGF\) \(1 + x^6 + x^{12} + x^{18}..... = \frac{1}{1 - x^6}\) \(1 + x + x ^ 2 + x ...

  7. 清北学堂模拟赛d7t6 拯救世界

    分析:如果题目中没有环的话就是一道裸的最长路的题目,一旦有环每个城市就会被救多次火了.把有向有环图变成有向无环图只需要tarjan一边就可以了. #include <bits/stdc++.h& ...

  8. [LGP2000] 拯救世界

    6的倍数 1/(1-x^6) 最多9块 (1-x^10)/(1-x) 最多5块 (1-x^6)/(1-x) 4的倍数 1/(1-x^4) 最多7块 (1-x^8)/(1-x) 2的倍数 1/(1-x^ ...

  9. Luogu2000 拯救世界

    题目链接:戳我 生成函数的入门题吧. 我们可以把条件限制转化为生成函数,然后用第i项的系数来表示一共使用n块石头的方案个数. (你问我为什么?你可以自己演算一下,或者去看大佬的博客-->这里面讲 ...

随机推荐

  1. 【学习笔记】剖析MVVM框架,简单实现Vue数据双向绑定

    前言: 学习前端也有半年多了,个人的学习欲望还比较强烈,很喜欢那种新知识在自己的演练下一点点实现的过程.最近一直在学vue框架,像网上大佬说的,入门容易深究难.不管是跟着开发文档学还是视频教程,按步骤 ...

  2. [PKUWC 2018]随机游走

    Description 题库链接 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\) ...

  3. Java Generator

    以前我以为只有Python才会有generator,看来当时的我才年轻,后来认真研读<Thinking in Java>之后大有感悟,原来Java亦有generator,故做一次记录分享. ...

  4. Extjs4---Cannot read property 'addCls' of null 或者 el is null 关于tab关闭后再打开不显示或者报错

    做后台管理系统时遇到的问题,关于tab关闭后再打开不显示,或者报错 我在新的tabpanel中加入了一个grid,当我关闭再次打开就会报错Cannot read property 'addCls' o ...

  5. angularjs学习第九天笔记(指令作用域【隔离作用域】研究)

    您好,昨天学习了指令作用域为布尔型的情况, 今天主要研究其指针作用域为{}的情况 1.当作用域scope为{}时,子作用域完全创建一个独立的作用域, 此时,子做预约和外部作用域完全不数据交互 但是,在 ...

  6. Ajax事件,方法

    1\ready:事件:使用ready()来使函数在文档加载后可用 $(document).ready(funcation(){ 函数体 }) 2\click事件:当单机元素时,使用 3\focus事件 ...

  7. 23种设计模式+J2EE设计模式学习笔记-初识设计模式

    设计模式简介: 设计模式是一套被反复使用的.多数人知晓的.经过分类编目的.代码设计经验的总结.(个人理解:设计模式是不关乎业务,逻辑实现,针对普遍问题的一种解决方案). 设计模式的类型: 传统23种设 ...

  8. instanceof和typeof的细节

    我骑着小毛驴,喝着大红牛哇,哩个啷格里格朗,别问我为什么这木开心,如果活着不是为了浪荡那将毫无意义 今天来捋一捋我们平日经常用的instanceof和typeof的一些小问题 typeof: type ...

  9. python之黏包和黏包解决方案

    黏包现象主要发生在TCP连接, 基于TCP的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看来,根本不知道该文件的字节流从何处开始,在何处结束. 两种黏包现象: 1 ...

  10. 新浪微博POI点签到数据及可视化的初步成果

    目前仅对山东省区域进行了抓取,权限不够高,抓取的速度非常慢,所以导致效率比较低... 数据抓取采用调用微博开放平台API的方法,数据存储采用mysql,格点数据分辨率为30″,山东省的MBR范围内(包 ...