1151 - Snakes and Ladders

Time Limit: 2 second(s)    Memory Limit: 32 MB

'Snakes and Ladders' or 'Shap-Ludu' is a game commonly played in Bangladesh. The game is so common that it would be tough to find a person who hasn't played it. But those who haven't played it (unlucky of course!) the rules are as follows. There is a 10 x 10 board containing some cells numbered from 1 to 100.

  1. You start at position 1.
  2. Each time you throw a perfect dice containing numbers 1 to 6.
  3. There are some snakes and some ladders in the board. Ladders will take you up from one cell to another. Snakes will take you down.
  4. If you reach a cell that contains the bottom part of a ladder, you will immediately move to the cell which contains the upper side of that ladder. Similarly if you reach a cell that has a snake-head you immediately go down to the cell where the tail of that snake ends.
  5. The board is designed so that from any cell you can jump at most once. (For example there is a snake from 62 to 19, assume that another is from 19 to 2. So, if you reach 62, you will first jump to 19, you will jump to 2. These kinds of cases will not be given)
  6. There is no snake head in the 100-th cell and no ladder (bottom part) in the first cell.
  7. If you reach cell 100, the game ends. But if you have to go outside the board in any time your move will be lost. That means you will not take that move and you have to throw the dice again.

Now given a board, you have to find the expected number of times you need to throw the dice to win the game. The cases will be given such that a result will be found.

Input

Input starts with an integer T (≤ 105), denoting the number of test cases.

The first line of a case is a blank line. The next line gives you an integer n denoting the number of snakes and ladders. Each of the next n lines contain two integers a and b (1 ≤ a, b ≤ 100, a ≠ b). If a < b, it means that there is a ladder which takes you from a to b. If a > b, it means that there is a snake which takes you from a to b. Assume that the given board follows the above restrictions.

Output

For each case of input, print the case number and the expected number of times you need to throw the dice. Errors less than 10-6 will be ignored.

Sample Input

2

14

4 42

9 30

16 8

14 77

32 12

37 58

47 26

48 73

62 19

70 89

71 67

80 98

87 24

96 76

0

Output for Sample Input

Case 1: 31.54880806

Case 2: 33.0476190476

主要题意就不解释了。。

我们设从点i到100的步数期望为Ei。

则:

如果Ei有连向其他格子的边,设走到to[i],则Ei=Etoi。

否则Ei=(Ex1+Ex2+...+Exk)*(1/6)+1。其中,k=min(6,100-i),x1+1=x2,x2+1=x3,......xi+1=xi+1。

但是我们发现,to[i]可能大于i,也可能小于i,所以不能直接DP或递推。

所以相当于解一个有100个100元方程的方程组。其中最后一个方程已经确定,且得到E[100]=0。

那么,就相当于用高斯消元解一个有唯一解的实数方程组了。

code:

 #include<bits/stdc++.h>
 #define Ms(a,x) memset(a,x,sizeof a)
 using namespace std;
 ;
 int n,got[N]; double a[N][N],E[N];
 ?x:-x;}
 void Gauss(int equ,int var) {
     ,col=,cho;
     for (; row<=equ&&col<=var; row++,col++) {
         cho=row;
         ; i<=equ; i++)
             if (abso(a[i][col])>abso(a[cho][col])) cho=col;
         if (cho!=row)
             ; i++) swap(a[cho][i],a[row][i]);
         ) {col--; continue;}
         ; i<=equ; i++) ) {
             double k=a[i][col]/a[row][col];
             ; j++) a[i][j]-=k*a[row][j];
         }
     }
     for (int i=var; i; i--) {
         ];
         ; j<=var; j++) re-=a[i][j]*E[j];
         E[i]=re/a[i][i];
     }
 }
 int main() {
     int T; scanf("%d",&T);
     ; ts<=T; ts++) {
         cin>>n,Ms(got,),Ms(a,),Ms(E,);
         ,x,y; i<=n; i++)
             scanf("%d%d",&x,&y),got[x]=y;
         ,c; i<; i++) if (!got[i]) {
             c=min(,-i),a[i][i]=c,a[i][]=;
             ; j<=&&i+j<=; j++) a[i][i+j]=-;
         } ,a[i][got[i]]=-,a[i][]=;
         a[][]=,a[][]=;
         Gauss(,);
         printf(]);
     }
     ;
 }

[lightoj P1151] Snakes and Ladders的更多相关文章

  1. LightOJ - 1151 Snakes and Ladders —— 期望、高斯消元法

    题目链接:https://vjudge.net/problem/LightOJ-1151 1151 - Snakes and Ladders    PDF (English) Statistics F ...

  2. LightOJ 1151 - Snakes and Ladders 高斯消元+概率DP

    首先来个期望的论文,讲的非常好,里面也提到了使用线性方程组求解,尤其适用于有向图的期望问题. 算法合集之<浅析竞赛中一类数学期望问题的解决方法> http://www.lightoj.co ...

  3. LightOJ - 1151 Snakes and Ladders

    LightOJ - 1151 思路: 将期望dp[x]看成自变量,那么递推式就可以看成方程组,用高斯消元求方程组的解就能求解出期望值 高斯消元求解的过程也是期望逆推的过程,注意边界情况的常数项,是6/ ...

  4. LightOJ 1151 Snakes and Ladders(概率DP + 高斯消元)

    题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且 ...

  5. LightOJ 1151 Snakes and Ladders 期望dp+高斯消元

    题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 ...

  6. LightOJ - 1151 Snakes and Ladders(概率dp+高斯消元)

    有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格子,G[i]表示从i传送到G[i].1和100不会有传送,一个格子也不会有两 ...

  7. Snakes and Ladders LightOJ - 1151( 概率dp+高斯消元)

    Snakes and Ladders LightOJ - 1151 题意: 有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格 ...

  8. [Swift]LeetCode909. 蛇梯棋 | Snakes and Ladders

    On an N x N board, the numbers from 1 to N*N are written boustrophedonically starting from the botto ...

  9. light oj 1151 - Snakes and Ladders 高斯消元+概率DP

    思路: 在没有梯子与蛇的时候很容易想到如下公式: dp[i]=1+(∑dp[i+j])/6 但是现在有梯子和蛇也是一样的,初始化p[i]=i; 当有梯子或蛇时转移为p[a]=b; 这样方程变为: dp ...

随机推荐

  1. 一年工作经验的大专生程序员(java后台)

    1.文章前言     作为18应届毕业大专生已工作一年,相信这也是大部分同届生的现状.       那么,一个萌新进入职场一年都经历了什么呢?在校那会我是挺好奇的.       这篇文章是根据自己一年 ...

  2. python中使用redis

    准备 安装redis服务 点击查看Ubuntu中安装Redis. 安装依赖包 pip install redis 使用 import redis 创建连接 1.普通连接: conn = redis.R ...

  3. go语言的安装与开发环境

    安装golang编译器: https://studygolang.com/dl 之后设置环境变量GOPATH(项目目录)  GOROOT(默认已经设置好) 安装编辑器:IDEA安装和破解 https: ...

  4. dll静态调用和动态调用

    动态链接库有2种连接方式,一种是通过库直接加入(又叫隐式加载或载入时加载),一种是在运行时加入.后者很好理解,比如LoadLibrary(),GetProcAddress()获取想要引入的函数,使用完 ...

  5. OpenStack-Neutron-VPNaaS-配置

    配置openstack版本:Juno vpnaas配置的资料很少,官网目前参考的https://wiki.openstack.org/wiki/Neutron/VPNaaS/HowToInstall比 ...

  6. 线段树 HDU-1166 敌兵布阵

    敌兵布阵是一个线段树典题,题目如下(点此查看题目出处): Problem Description C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国 ...

  7. 【转】学习Robot Framework必须掌握的库—-BuiltIn库

    作为一门表格语言,为了保持简单的结构,RF没有像别的高级语言那样提供类似if else while等内置关键字来实现各种逻辑功能,而是提供给了用户BuiltIn库.如果用户想在测试用例中实现比较复杂的 ...

  8. MySQL 5.6 (Win7 64位)下载、安装与配置图文教程

    一. 工具 Win7 64位操作系统 二. 步骤 第一步:下载安装包 下载 地址:http://www.mysql.com/ 截止到目前(2016/7/24) ,官网的最新版本是5.7.13,不过自己 ...

  9. win10安装JDK

    1.下载 首先,在官网下载 JDK:Oracle 官网 如上图所示,在 Oracle 官网下载 JDK,有一点需要注意,那就是在咱们下载合适的 JDK 之前,需要先点击“标记1”所在的按钮,选择接受. ...

  10. Sanic

    基础 厉害了我的 Sanic hello word, Sanic