1151 - Snakes and Ladders

Time Limit: 2 second(s)    Memory Limit: 32 MB

'Snakes and Ladders' or 'Shap-Ludu' is a game commonly played in Bangladesh. The game is so common that it would be tough to find a person who hasn't played it. But those who haven't played it (unlucky of course!) the rules are as follows. There is a 10 x 10 board containing some cells numbered from 1 to 100.

  1. You start at position 1.
  2. Each time you throw a perfect dice containing numbers 1 to 6.
  3. There are some snakes and some ladders in the board. Ladders will take you up from one cell to another. Snakes will take you down.
  4. If you reach a cell that contains the bottom part of a ladder, you will immediately move to the cell which contains the upper side of that ladder. Similarly if you reach a cell that has a snake-head you immediately go down to the cell where the tail of that snake ends.
  5. The board is designed so that from any cell you can jump at most once. (For example there is a snake from 62 to 19, assume that another is from 19 to 2. So, if you reach 62, you will first jump to 19, you will jump to 2. These kinds of cases will not be given)
  6. There is no snake head in the 100-th cell and no ladder (bottom part) in the first cell.
  7. If you reach cell 100, the game ends. But if you have to go outside the board in any time your move will be lost. That means you will not take that move and you have to throw the dice again.

Now given a board, you have to find the expected number of times you need to throw the dice to win the game. The cases will be given such that a result will be found.

Input

Input starts with an integer T (≤ 105), denoting the number of test cases.

The first line of a case is a blank line. The next line gives you an integer n denoting the number of snakes and ladders. Each of the next n lines contain two integers a and b (1 ≤ a, b ≤ 100, a ≠ b). If a < b, it means that there is a ladder which takes you from a to b. If a > b, it means that there is a snake which takes you from a to b. Assume that the given board follows the above restrictions.

Output

For each case of input, print the case number and the expected number of times you need to throw the dice. Errors less than 10-6 will be ignored.

Sample Input

2

14

4 42

9 30

16 8

14 77

32 12

37 58

47 26

48 73

62 19

70 89

71 67

80 98

87 24

96 76

0

Output for Sample Input

Case 1: 31.54880806

Case 2: 33.0476190476

主要题意就不解释了。。

我们设从点i到100的步数期望为Ei。

则:

如果Ei有连向其他格子的边,设走到to[i],则Ei=Etoi。

否则Ei=(Ex1+Ex2+...+Exk)*(1/6)+1。其中,k=min(6,100-i),x1+1=x2,x2+1=x3,......xi+1=xi+1。

但是我们发现,to[i]可能大于i,也可能小于i,所以不能直接DP或递推。

所以相当于解一个有100个100元方程的方程组。其中最后一个方程已经确定,且得到E[100]=0。

那么,就相当于用高斯消元解一个有唯一解的实数方程组了。

code:

 #include<bits/stdc++.h>
 #define Ms(a,x) memset(a,x,sizeof a)
 using namespace std;
 ;
 int n,got[N]; double a[N][N],E[N];
 ?x:-x;}
 void Gauss(int equ,int var) {
     ,col=,cho;
     for (; row<=equ&&col<=var; row++,col++) {
         cho=row;
         ; i<=equ; i++)
             if (abso(a[i][col])>abso(a[cho][col])) cho=col;
         if (cho!=row)
             ; i++) swap(a[cho][i],a[row][i]);
         ) {col--; continue;}
         ; i<=equ; i++) ) {
             double k=a[i][col]/a[row][col];
             ; j++) a[i][j]-=k*a[row][j];
         }
     }
     for (int i=var; i; i--) {
         ];
         ; j<=var; j++) re-=a[i][j]*E[j];
         E[i]=re/a[i][i];
     }
 }
 int main() {
     int T; scanf("%d",&T);
     ; ts<=T; ts++) {
         cin>>n,Ms(got,),Ms(a,),Ms(E,);
         ,x,y; i<=n; i++)
             scanf("%d%d",&x,&y),got[x]=y;
         ,c; i<; i++) if (!got[i]) {
             c=min(,-i),a[i][i]=c,a[i][]=;
             ; j<=&&i+j<=; j++) a[i][i+j]=-;
         } ,a[i][got[i]]=-,a[i][]=;
         a[][]=,a[][]=;
         Gauss(,);
         printf(]);
     }
     ;
 }

[lightoj P1151] Snakes and Ladders的更多相关文章

  1. LightOJ - 1151 Snakes and Ladders —— 期望、高斯消元法

    题目链接:https://vjudge.net/problem/LightOJ-1151 1151 - Snakes and Ladders    PDF (English) Statistics F ...

  2. LightOJ 1151 - Snakes and Ladders 高斯消元+概率DP

    首先来个期望的论文,讲的非常好,里面也提到了使用线性方程组求解,尤其适用于有向图的期望问题. 算法合集之<浅析竞赛中一类数学期望问题的解决方法> http://www.lightoj.co ...

  3. LightOJ - 1151 Snakes and Ladders

    LightOJ - 1151 思路: 将期望dp[x]看成自变量,那么递推式就可以看成方程组,用高斯消元求方程组的解就能求解出期望值 高斯消元求解的过程也是期望逆推的过程,注意边界情况的常数项,是6/ ...

  4. LightOJ 1151 Snakes and Ladders(概率DP + 高斯消元)

    题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且 ...

  5. LightOJ 1151 Snakes and Ladders 期望dp+高斯消元

    题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 ...

  6. LightOJ - 1151 Snakes and Ladders(概率dp+高斯消元)

    有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格子,G[i]表示从i传送到G[i].1和100不会有传送,一个格子也不会有两 ...

  7. Snakes and Ladders LightOJ - 1151( 概率dp+高斯消元)

    Snakes and Ladders LightOJ - 1151 题意: 有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格 ...

  8. [Swift]LeetCode909. 蛇梯棋 | Snakes and Ladders

    On an N x N board, the numbers from 1 to N*N are written boustrophedonically starting from the botto ...

  9. light oj 1151 - Snakes and Ladders 高斯消元+概率DP

    思路: 在没有梯子与蛇的时候很容易想到如下公式: dp[i]=1+(∑dp[i+j])/6 但是现在有梯子和蛇也是一样的,初始化p[i]=i; 当有梯子或蛇时转移为p[a]=b; 这样方程变为: dp ...

随机推荐

  1. Python subprocess.Popen() error (No such file or directory)

    这个错误很容易引起误解,一般人都会认为是命令执行了,但是命令找不到作为参数对应的文件或者目录.其实还有一层含义,就是这个命令找不到,命令找不到,也会报没有这个文件或者目录的错误. 为什么找不到这个命令 ...

  2. cocos2dx JS layuot纯代码实现背景颜色渐变

    // view._partyBtnClassify.setBackGroundColorType(ccui.Layout.BG_COLOR_GRADIENT);// view._partyBtnCla ...

  3. [ Python ] KMP Algorithms

    def pmt(s): """ :param s: the string to get its partial match table :return: partial ...

  4. day09 python之函数进阶

    楔子 假如有一个函数,实现返回两个数中的较大值: def my_max(x,y): m = x if x>y else y return mbigger = my_max(10,20)print ...

  5. Lucky 7 (容斥原理 + 中国剩余定理)

    题意:求满足7的倍数,不满足其他条件num % p == a 的num的个数. 思路:利用中国剩余定理我i们可以求出7的倍数,但是多算了不满足约定条件又得减去一个,但是又发现多减了,又得加回来.如此, ...

  6. Restful API接口调用的方法总结

    restful 接口调用的方法 https://www.cnblogs.com/taozhiye/p/6704659.html http://www.jb51.net/article/120589.h ...

  7. Mysql报错:Packet for query is too large (1121604 > 1048576).You can change this value on the server by setting the max_allowed_packet variable

    看错误信息,发现1048576个字节,正好是1*1024*1024byte,也就是1Mb. 这正是mysql默认的max_allowed_packet值. 使用sql语句: show VARIABLE ...

  8. CentOS 6.5系统中安装配置MySQL数据库

    就像Windows server 2003,2008中一般安装的是Sql Server 数据库,在linux系统中一般安装的是mysql数据库,而且Mysql数据库的第一个版本就是发行在Linux系统 ...

  9. Python+OpenCV图像处理(十五)—— 圆检测

    简介: 1.霍夫圆变换的基本原理和霍夫线变换原理类似,只是点对应的二维极径.极角空间被三维的圆心和半径空间取代.在标准霍夫圆变换中,原图像的边缘图像的任意点对应的经过这个点的所有可能圆在三维空间用圆心 ...

  10. C#中抽象类和接口的区别与使用

    一.抽象类: 抽象类是特殊的类,只是不能被实例化:除此以外,具有类的其他特性:重要的是抽象类可以包括抽象方法,这是普通类所不能的.抽象方法只能声明于抽象类中,且不包含任何实现,派生类必须覆盖它们.另外 ...