Deep learning: Dropout, DropConnect

Dropout

训练神经网络模型时,如果训练样本比较少,为了防止模型过拟合,可以使用Dropout来一定程度的减少过拟合。Dropout是Hinton 在2012年提出来的。

Dropout是指在模型训练时随机的让隐层节点的权重变成0,暂时认为这些节点不是网络结构的一部分,但是会把它们的权重保留下来(不更新)上图帮助理解。

我使用的是Matlab的Deeplearning 的工具包https://github.com/rasmusbergpalm/DeepLearnToolbox
我只使用的是简单地单隐层的感知机,数据是MNIST手写数字识别,该数据一共有60000个训练样本和10000个测试样本。图片大小是28 *
28,网络结构的层数是[784 512
10],100次迭代,minibatch大小是100,我做了在没有dropout和有dropout的实验对比。dropout的值是0.5,即以0.5的概率随机参数隐层节点。
代码如下:

load mnist_uint8
train_x = double(train_x(1:60000,:)) / 255;
train_y = double(train_y(1:60000,:));
test_x = double(test_x(1:10000,:)) / 255;
test_y = double(test_y(1:10000,:));
[train_x ,mu, sigma] = zscore(train_x);
test_x = normalize(test_x, mu,sigma); %% without dropout
rand(0);
nn = nnsetup([ 784 512 10]);
opts.numepochs = 100;
opts.batchsize = 100;
[nn, L] = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
str = sprintf('testing error rate is : %f', er);
disp(str); %% with dropout
rand(0);
nn = nnsetup([784 512 10]);
nn.dropoutFraction = 0.5;
opts.batchsize = 100;
opts.numepochs = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
str = sprintf('test error rate is : %f', er);
disp(str);

实验结果是:
test error rate is : 0.035200
With dropout, test error rate is : 0.031400

参考资料:

DropConnect

神经网络一般在大规模标签数据分类表现的很好,但是一帮需要更多的层数和更多的神经元,单数如果没有规范化的话,数百万和数十亿的参数很可能导致模型的过拟合。
现有的Regularization方法:

  • $l_1$ 或者 $l_2$ 惩罚
  • 贝叶斯的方法
  • 早停
  • 以上提到的Dropout方法[Hinton et al.2012]

DropConnect与Dropout不同的地方是在训练神经网络模型过程中,它不是随机的将隐层节点的输出变成0,而是将节点中的每个与其相连的输入权值以1-p的概率变成0。(一个是输出一个是输入)

在MNITS数据集上的实验结果,分别是no-Drop,dropout和dropconnect的对比。

DropConnect的主页有源码可下载:DropConnect project page

参考资料

Dropout, DropConnect ——一个对输出,一个对输入的更多相关文章

  1. C# 基础控制台程序的创建,输出,输入,定义变量,变量赋值,值覆盖,值拼接,值打印

    基础学习内容有 Console.WriteLine("要输出的内容");//往外输出内容的 Console.ReadLine(); //等待用户输入,按回车键结束,防止程序闪退 控 ...

  2. 2017-2-17 c#基础学习 (控制台程序的创建,输出,输入,定义变量,变量赋值,值覆盖,值拼接,值打印)

    1 控制台程序的创建 > 新建项目  ,选择 c#,  框架选择4.0 , 选择控制应用台程序, 选择文件保存位置 修改名字. 2 c#输出与输入 >在main函数中编写代码 >在编 ...

  3. tornado 02 输出、输入和URL传参

    tornado 02 输出.输入和URL传参 一.输出 write输出到页面 #write可以接受的对象 #write() 可以接受3种对象:bytes Unicode字符(二进制字符) 字典 #如果 ...

  4. C Primer Plus学习笔记(七)- 字符输入/输出和输入验证

    单字符 I/O:getchar() 和 putchar() getchar() 和 putchar() 每次只处理一个字符 getchar() 和 putchar() 都不是真正的函数,它们被定义为供 ...

  5. 编写Java程序,实现从控制台输入对应个数的整数,输出对输入整数的从大到小显示

    编写Java程序,实现从控制台输入对应个数的整数,输出对输入整数的从大到小显示 效果如下: 实现代码: import java.util.Arrays; import java.util.Scanne ...

  6. c#输出、输入

    //输出 Console.WriteLine("这是一行文字");  自动回车的. Console.Write("Hello world");  不带回车的. ...

  7. 【C语言学习】《C Primer Plus》第8章 字符输入/输出和输入确认

    学习总结 1.缓冲区分为完全缓冲区(fully buffered)I/O和行缓冲区(line-buffered)I/O.对完全缓冲输入来说,当缓冲区满的时候会被清空(缓冲区内容发送至其目的地).这类型 ...

  8. c#输出、输入练习

    //输出 Console.WriteLine("这是一行文字");  自动回车的. Console.Write("Hello world");  不带回车的. ...

  9. C语言基础学习基本数据类型-变量的输出与输入

    变量的输出 变量如何输入输出呢?实际上,在这之前你已经使用过输出语句(printf语句)了,我们可以使用printf来执行输出. printf语句的使用方法如下: printf(格式控制字符串, 数据 ...

随机推荐

  1. 用maven创建一个web项目

    下面所使用的Eclipse开发工具为Eclipse Java EE IDE 版本. 1.创建一个maven项目,如图所示: 选择“maven-archetype-webapp”,如图所示: 后面几步按 ...

  2. How do you explain Machine Learning and Data Mining to non Computer Science people?

    How do you explain Machine Learning and Data Mining to non Computer Science people?   Pararth Shah, ...

  3. Django框架详细介绍---ORM相关操作

    Django ORM相关操作 官方文档: https://docs.djangoproject.com/en/2.0/ref/models/querysets/ 1.必须掌握的十三个方法 <1& ...

  4. Vue系列之 => ref获取DOM元素和组件

    可以获取DOM元素,和组件中的数据,方法 <!DOCTYPE html> <html lang="en"> <head> <meta ch ...

  5. 即时通讯(IV)

    数据流

  6. 一定要知道的,那些Linux操作命令

    一定要知道的,那些Linux基本操作命令(一) 目录 1.文件和目录操作命令 2.用户和用户组操作命令 3.vim编辑器操作命令 4.打包和解压操作命令 5.系统操作命令 为什么要学习linux? 1 ...

  7. spring 获取对象的注解

    BeanDefinition definition = registry.getBeanDefinition(name); if (definition instanceof AnnotatedBea ...

  8. 解决mysql中文乱码问题?

    mysql是我们项目中非常常用的数据型数据库.但是因为我们需要在数据库保存中文字符,所以经常遇到数据库乱码情况.下面就来介绍一下如何彻底解决数据库中文乱码情况. 1.中文乱码 1.1.中文乱码 cre ...

  9. 使用sp_addlinkedserver、sp_dropserver 、sp_addlinkedsrvlogin和sp_droplinkedsrvlogin 远程查询数据

    一.sp_addlinkedserver  创建链接服务器. 链接服务器让用户可以对 OLE DB 数据源进行分布式异类查询. 在使用 sp_addlinkedserver 创建链接服务器后,可对该服 ...

  10. centos下载

    标题:   https://www.cnblogs.com/tony-brook/p/9849624.html DVD ISO:普通光盘完整安装版镜像,可离线安装到计算机硬盘上,包含大量的常用软件,一 ...