Luogu P3462 [POI2007]ODW-Weights
题目描述
While moving to a new compound the Byteotian Institute of Experimental Physics has encountered a logisticalproblem - the transfer of its vast collection of precision weights turned out to be non-trivial.
The Institute has a certain number of containers of limited strength at its disposal. As many weightsas possible are to be put into the containers, the remaining ones will be discarded. There is no limit onthe number of weights to be put in a container apart from the requirement of not exceeding its strength. Acontainer may also be empty.
Any two weights in the Institute have a peculiar property: the mass of one of them is an integer multipleof the mass of the other. Particularly, they may have the same mass.
TaskWrite a programme which:
reads the durabilities of the containers and masses of the weights from the standard input, determines the maximal number of weights that can be put in the containers, writes the outcome to the standard output.
在byteotian公司搬家的时候,他们发现他们的大量的精密砝码的搬运是一件恼人的工作。公司有一些固定容量的容器可以装这些砝码。他们想装尽量多的砝码以便搬运,并且丢弃剩下的砝码。每个容器可以装的砝码数量有限制,但是他们能够装的总重量不能超过每个容器的限制。一个容器也可以不装任何东西。任何两个砝码都有一个特征,他们的中总有一个的重量是另外一个的整数倍,当然他们也可能相等。
输入输出格式
输入格式:
The first line of the standard input contains two integers nnn and mmm(1≤n,m≤100000)(1≤n,m≤100 000)(1≤n,m≤100000), separated by a singlespace, denoting respectively: the number of containers and the number of weights. The second line of thestandard input consists of nnn integers wiw_iwi (1≤wi≤1 000 000 0001≤wi≤1000000000,for1≤i≤n1≤i≤n)(1\le w_i\le 1\ 000\ 000\ 0001≤w_i ≤1 000 000 000 ,for 1\le i\le n1≤i≤n)(1≤wi≤1 000 000 0001≤wi≤1000000000,for1≤i≤n1≤i≤n), separated by single spaces,denoting the strengths of containers in milligrammes. In the third line there are mmm integers mj(1≤mj≤1 000 000 000 for1≤j≤m)m_j(1\le m_j\le 1\ 000\ 000\ 000\ for 1\le j\le m)mj(1≤mj≤1 000 000 000 for1≤j≤m), separated by single spaces, denoting masses of the weights in milligrammes.
输出格式:
The first and only line of the standard output should contain a single integer -the maximal number ofweights that can be placed in the containers without exceeding their durability.
输入输出样例
输入样例#1:
2 4
13 9
4 12 2 4
输出样例#1:
3
贪心
我们要充分利用题目中“任意两个砝码中有一个是另一个的整数倍”的性质。首先一个很显然的结论就是尽量取小的砝码。我们要考虑的是取小砝码的时候放在哪些容器中。根据题目的特殊性质,可以将砝码的重量看做一个进制(进制数不固定)。然后将容器进行进制拆分,每一位上的数全部累加起来。放砝码的时候就是高精度减法,直到不能放为止。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#include<queue>
#include<iomanip>
#define ll long long
#define N 100005 using namespace std;
inline int Get() {int x=,f=;char ch=getchar();while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}while(''<=ch&&ch<='') {x=(x<<)+(x<<)+ch-'';ch=getchar();}return x*f;} int n,m,cc;
int c[N],w[N];
int d[N];
int ans;
int cnt[N];
int a[N];
struct node {
int v;
int key;
bool operator <(const node &a)const {
if(key!=a.key) return key<a.key;
return v<a.v;
}
};
priority_queue<node>q; bool reduce(int v) {
a[v]--;
while(a[v]<&&v<cc) {
a[v]+=d[v+]/d[v];
a[++v]--;
}
return (v<cc);
} int main() {
n=Get(),m=Get();
for(int i=;i<=n;i++) c[i]=Get();
for(int i=;i<=m;i++) w[i]=Get();
sort(c+,c++n);
sort(w+,w++m);
for(int i=;i<=n;i++) c[i]/=w[];
for(int i=m;i>=;i--) w[i]/=w[];
for(int i=;i<=m;i++) d[i]=w[i];
sort(d+,d++m);
cc=unique(d+,d++m)-d;
int now=;
d[cc]=d[cc-]*;
for(int i=;i<=n;i++) {
for(int j=;j<cc&&c[i];c[i]/=d[j+]/d[j],j++) {
if(j<cc-) a[j]+=c[i]%(d[j+]/d[j]);
else a[j]+=c[i];
}
}
for(int i=;i<=m;i++) {
if(w[i]!=w[i-]) now++;
if(reduce(now)) ans++;
else break;
}
cout<<ans<<"\n";
return ;
}
Luogu P3462 [POI2007]ODW-Weights的更多相关文章
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- 洛谷 P3462 [POI2007]ODW-Weights
题面: https://www.luogu.org/problemnew/show/P3462 https://www.lydsy.com/JudgeOnline/problem.php?id=111 ...
- Luogu P3455 [POI2007]ZAP-Queries
由于之前做了Luogu P2257 YY的GCD,这里的做法就十分套路了. 建议先看上面一题的推导,这里的话就略去一些共性的地方了. 还是和之前一样设: \[f(d)=\sum_{i=1}^a \su ...
- Luogu P3459 [POI2007]MEG-Megalopolis(线段树)
P3459 [POI2007]MEG-Megalopolis 题意 题目描述 Byteotia has been eventually touched by globalisation, and so ...
- Luogu 3457 [POI2007]POW-The Flood
感觉自己什么题都写不动了. 又是一个神贪心:把所有城市中的点按照高度从小到大排序之后拿出来逐个计算,枚举其他高度小于它的点向四周扩展,如果这个点不能被之前放过的抽水机覆盖,那么把答案加一,并在这个点放 ...
- BZOJ 1107: [POI2007]驾驶考试egz / Luogu P3463 [POI2007]EGZ-Driving Exam (树状数组 LIS)
能从iii走到所有跑道 相当于 能从iii走到111和nnn. 边反向后就相当于 能从111和nnn走到iii. 为了方便叙述,把111~nnn叫做x坐标,111~(m+1)(m+1)(m+1)叫做y ...
- Luogu P2522 [HAOI2011]Problem b
如果你做过[Luogu P3455 POI2007]ZAP-Queries就很好办了,我们发现那一题求的是\(\sum_{i=1}^a\sum_{j=1}^b[\gcd(i,j)=d]\),就是这道题 ...
- NOIp2018停课刷题记录
Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...
- BZOJ 1110: [POI2007]砝码Odw
1110: [POI2007]砝码Odw Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 547 Solved: 296[Submit][Status ...
随机推荐
- 【学习笔记】JS设计模式总结
前言:这段时间都在学习Vue的知识,虽然手边放着一本js高程,但确实好久没有好好复习了.温故而知新,因此特意把JS常见的设计模式总结,希望对大家有所帮助... 1. 工厂模式 释义:像工厂一样流水线般 ...
- GNU μC/OS-II 在 S3C2440 上中断的实现
上一篇文章介绍了S3c2440的中断体系结构,今天我们来分析一下GNU-uC/OS-II在S3c2440上中断的实现. 首先找到IRQ的中断的向量,位于 2440init.S : OK ,我们通过名字 ...
- C# 基础运算符及运算
本节主要讲述运算符的分类及其实际运用 运算符 分类 符号 解释 优先级 算数 ++ -- 加加(加1) 减减(减1) 由高到低,即执行顺序由上到下(圆括号的优先级最高) * / % 乘 除 ...
- ip2Long 代码
def ip2Long(ip: String): Long = { val fragments = ip.split("[.]") var ipNum = 0L for (i &l ...
- 【Spring】19、spring配置数据源的4种方式
不管采用何种持久化技术,都需要定义数据源.Spring中提供了4种不同形式的数据源配置方式: spring自带的数据源(DriverManagerDataSource),DBCP数据源,C3P0数据源 ...
- 【常用配置】Hadoop-2.6.5在Ubuntu14.04下的伪分布式配置
core-site.xml <?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet t ...
- Java-IO:复制文件
import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStrea ...
- 通过了解JS的clientX、pageX、screenX等方法来获取鼠标位置相对屏幕,相对浏览器窗口,相对文档的坐标详解
在一些DOM操作中我们经常会跟元素的位置打交道,鼠标交互式一个经常用到的方面,令人失望的是不同的浏览器下会有不同的结果甚至是有的浏览器下没结果,这篇文章就上鼠标点击位置坐标获取做一些简单的总结,没特殊 ...
- 2018-02-04 AppleScript类自然语言与非英语语法设计
最早知晓是之前C#中文版的github讨论里提到了AppleScript有多语言版. 昨天想起, 觉得它毕竟是为数不多(仅有的?)大公司开发的非英语语法的编程语言, 不禁好奇它的前世今生. 于是作了一 ...
- python自动化开发-7
socket编程 Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对 ...