[Solution] JZOJ3470 最短路
[Solution] JZOJ3470 最短路
题面
Description
给定一个n个点m条边的有向图,有k个标记点,要求从规定的起点按任意顺序经过所有标记点到达规定的终点,问最短的距离是多少。
Input
第一行5个整数n、m、k、s、t,表示点个数、边条数、标记点个数、起点编号、终点编号。
接下来m行每行3个整数x、y、z,表示有一条从x到y的长为z的有向边。
接下来k行每行一个整数表示标记点编号。
Output
输出一个整数,表示最短距离,若没有方案可行输出-1。
Sample Input
3 3 2 1 1
1 2 1
2 3 1
3 1 1
2
3
Sample Output
3
【样例解释】
路径为1->2->3->1。
Data Constraint
20%的数据n<=10。
50%的数据n<=1000。
另有20%的数据k=0。
100%的数据n<=50000,m<=100000,0<=k<=10,1<=z<=5000。
分割线
解题思路
这个题很显然是一个最短路的问题,主要分为一下步骤
Step1:预处理出起点终点和k个关键点之间的最短路
Step2:因为看到了0<=k<=10所以可以暴力搜路过点顺序的全排列
Step3:不要忘记剪枝
复杂度O(knlogn+k!)
具体见Code
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<vector>
#define maxn 50006
#define inf 0x3f3f3f3f3f3f3f3f
#define ll long long
using namespace std;
ll dis[maxn];
ll book[maxn];
ll f[15][15];
ll n,m,k,p,q;
struct Edge{
ll t,w,nxt;
}edge[maxn*2];
ll head[maxn],tot=0;
ll kk[20];
ll ans=inf,num=0;
priority_queue< pair<ll,ll> > hep;
ll gmin(ll a,ll b){return a<b?a:b;}
void add(ll st,ll to,ll we){edge[tot].t=to;edge[tot].w=we;edge[tot].nxt=head[st];head[st]=tot;tot++;}
void init(){
memset(head,-1,sizeof(head));
scanf("%lld %lld %lld %lld %lld",&n,&m,&k,&p,&q);
for(ll i=1;i<=m;i++){
ll a,b,c;scanf("%lld %lld %lld",&a,&b,&c);
add(a,b,c);
if(b==q)
add(a,n+1,c);
}
for(ll i=1;i<=k;i++)
scanf("%lld",kk+i);
kk[0]=p;kk[k+1]=n+1;
return;
}
void dij(ll s){
ll ss=s;
s=kk[s];
memset(dis,0x3f,sizeof(dis));
memset(book,0,sizeof(book));
while(!hep.empty()) hep.pop();
dis[s]=0;
hep.push(make_pair(0-dis[s],s));
while(!hep.empty()){
ll ns=hep.top().second;
hep.pop();
if(book[ns]) continue;
book[ns]=1;
for(ll i=head[ns];i!=-1;i=edge[i].nxt){
ll t=edge[i].t;
if(dis[t]>dis[ns]+edge[i].w){
dis[t]=dis[ns]+edge[i].w;
hep.push(make_pair(0-dis[t],t));
}
}
}
for(ll i=0;i<=k+1;i++)
f[ss][i]=dis[kk[i]];
return;
}
void dfs(ll dep,ll st){
if(num>=ans) return;
if(dep==k){
if(f[st][k+1]!=inf){
num+=f[st][k+1];
ans=gmin(ans,num);
num-=f[st][k+1];
}return;
}
for(ll i=1;i<=k;i++) if(!book[i])
if(f[st][i]!=inf){
book[i]=1;
num+=f[st][i];
dfs(dep+1,i);
num-=f[st][i];
book[i]=0;
}
}
void solve(){
for(ll i=0;i<=k;i++)
dij(i);
if(k==0)
if(f[0][1]!=inf){
printf("%lld\n",f[0][1]);return;
}
else{
printf("-1\n");return;
}
memset(book,0,sizeof(book));
for(ll i=1;i<=k;i++)if(f[0][i]!=inf){
memset(book,0,sizeof(book));
num+=f[0][i];
book[i]=1;
dfs(1,i);
book[i]=0;
num-=f[0][i];
}
if(ans==inf)
printf("-1\n");
else
printf("%lld\n",ans);
return;
}
int main(){
init();
solve();
return 0;
}
[Solution] JZOJ3470 最短路的更多相关文章
- P1266 速度限制 (最短路,图论)
题目链接 Solution 在最短路转移的时候在队列或者堆中记录状态为 \(f[u][v]\) 代表上一个节点为 \(u\) ,速度为 \(v\) . 然后按部就班转移即可... Code #incl ...
- [SinGuLaRiTy] 复习模板-图论
[SinGuLaRiTy-1041] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 计算树的直径 //方法:任选一个点作为起点进行一次BFS ...
- [AtCoder arc090E]Avoiding Collision
Description 题库链接 给出一张 \(N\) 个节点, \(M\) 条边的无向图,给出起点 \(S\) 和终点 \(T\) .询问两个人分别从 \(S\) 和 \(T\) 出发,走最短路不相 ...
- DP&图论 DAY 5 上午
DP&图论 DAY 5 上午 POJ 1125 Stockbroker Grapevine 有 N 个股票经济人可以互相传递消息,他们之间存在一些单向的通信路径.现在有一个消息要由某个人开 ...
- [bzoj3694]最短路
Description 给出一个$n$个点$m$条边的无向图,$n$个点的编号从$1-n$,定义源点为$1$. 定义最短路树如下:从源点$1$经过边集$T$到任意一点$i$有且仅有一条路径,且这条路径 ...
- 【BZOJ-4456】旅行者 分治 + 最短路
4456: [Zjoi2016]旅行者 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 254 Solved: 162[Submit][Status] ...
- 【BZOJ-4289】Tax 最短路 + 技巧建图
4289: PA2012 Tax Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 168 Solved: 69[Submit][Status][Dis ...
- 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)
2007: [Noi2010]海拔 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2095 Solved: 1002[Submit][Status] ...
- 【BZOJ-3931】网络吞吐量 最短路 + 最大流
3931: [CQOI2015]网络吞吐量 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1228 Solved: 524[Submit][Stat ...
随机推荐
- SpringMVC工作原理示意图
上面的是springMVC的工作原理图: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配DispatcherServlet的请求映射路径(在web.xml中 ...
- win7 英文版 中文乱码
win7 为了使用英文的 pcb 软件,把语言包改为英文版后,碰到一部分中文会变成乱码.通过下面方法可以识别: control panel --> region and language --& ...
- Calendar打印日历
package com.example.demo; import org.junit.Test; import org.junit.runner.RunWith; import org.springf ...
- .NET项目中使用PostSharp
PostSharp是一种Aspect Oriented Programming 面向切面(或面向方面)的组件框架,适用在.NET开发中,本篇主要介绍Postsharp在.NET开发中的相关知识,以及一 ...
- PHP判断手机、电脑访问
/*判断用户是手机访问还是电脑访问*/$useragent = $_SERVER['HTTP_USER_AGENT']; if (preg_match('/(android|bb\d+|meego). ...
- ReactiveX 学习笔记(23)RxCpp
RxCpp RxCpp 是 ReactiveX 的 C++ 语言实现. 下载 RxCpp $ git clone --recursive https://github.com/ReactiveX/Rx ...
- php中使用com组件出现"拒绝访问"的处理
php中使用com组件出现"拒绝访问"的处理 2010年05月14日 12:28:00 阅读数:1529 代码如下, // 建立一个指向新COM组件的索引 $word = new ...
- C# WinForm窗体及其控件的自适应
3步骤: 1.在需要自适应的Form中实例化全局变量 AutoSizeFormClass.cs源码在下方 AutoSizeFormClass asc = new AutoSizeFormClass ...
- Servlet中获取Spring管理的bean
描述: 在Servlet中调用Spring管理的接口,可以使Dao/Service/ServiceImpl. 前提是在调用的bean中有注解: @Repository("beanName&q ...
- linux上部署Appach,让文件目录以网页列表形式访问
效果: 1.首先,需要安装Apache httpd服务 yum install -y httpd 2.查看或者设置httpd主配文件 vim /etc/httpd/conf/htpd.conf 从中可 ...