题意

Implement pow(x, n).

求X的N次方。

解法

用正常的办法来做是会超时的,因为可能有21亿次方的情况,所以需要优化一下。这里用到了快速幂算法,简单来说就是将指数分解成二进制的形式,比如X的7次方,就可以表示成X^1 * X^2 * X^4,这里将7分解成了1+2+4的形式,这样做之后,乘法就只需要进行三次,所以要做的就是一边把指数分解成二进制的形式,一边记录不同指数下值。

class Solution
{
public:
double myPow(double x, int n)
{
if (abs(x - 0) < 10e-10)
return 0; long n_l = n;
if (n_l < 0)
{
x = 1 / x;
n_l = -n_l;
} double ans = 1;
double box = x;
while (n_l)
{
if (n_l & 1)
ans *= box;
box *= box;
n_l >>= 1;
} return ans;
}
};

LeetCode Pow(x, n) (快速幂)的更多相关文章

  1. LeetCode 50 - Pow(x, n) - [快速幂]

    实现 pow(x, n) ,即计算 x 的 n 次幂函数. 示例 1: 输入: 2.00000, 10输出: 1024.00000 示例 2: 输入: 2.10000, 3输出: 9.26100 示例 ...

  2. hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...

  3. leetcode 50. Pow(x, n)(快速幂)

    就是一个二分法快速幂. 但是需要注意的问题是这里是实数,而且n可能为负.int的范围是-2,147,483,648 至 2,147,483,647.如果为-2,147,483,648那么直接n=-n就 ...

  4. 快速幂(Fast Pow)

    定义 快速求a^b%c的算法 原理 指数可以被二进制分解 那么a^b可以分解为a^2^k1*a^2^k2*…… 又显然a^2^(k+1)=a^(2^k*2)=(a^2^k)^2 所以可以将指数在二进制 ...

  5. hdu 3307 Description has only two Sentences (欧拉函数+快速幂)

    Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  6. 1282 - Leading and Trailing ---LightOj1282(快速幂 + 数学)

    http://lightoj.com/volume_showproblem.php?problem=1282 题目大意: 求n的k次方的前三位和后三位数然后输出 后三位是用快速幂做的,我刚开始还是不会 ...

  7. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  8. 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2745  Solved: 1694[Submit][Statu ...

  9. HDU 2855 斐波那契+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...

随机推荐

  1. [20171115]ZEROCONF ROUTE.txt

    [20171115]ZEROCONF ROUTE.txt --//如果你检查linux服务器的网络配置,就可以发现如下一条路由: #  route -n | egrep "169.254|D ...

  2. [20170824]11G备库启用DRCP连接.txt

    [20170824]11G备库启用DRCP连接.txt --//参考链接:http://blog.itpub.net/267265/viewspace-2099397/blogs.oracle.com ...

  3. C#语言————第二章 C#语言快速热身

    第二章    C#语言快速热身 ***********一.选择结构**************** 1:if选择结构与java的if选择结构语法完全相同 2:switch选择结构 ①:常量表达式的值可 ...

  4. HCNA网络技术命令

    1.display version 显示系统软件版本及硬件信息 2.system-view 切换到系统视图 3.quit 切换回用户视图 4.return 从任意非用户视图退回到用户视图 5.sysn ...

  5. 【PAT】B1075 链表元素分类(25 分)

    这道题算有点难,心目中理想的难度. 不能前怕狼后怕虎,一会担心超时,一会又担心内存过大,直接撸 将三部分分别保存到vector 有意思的在于输出 分别输出第一个的add和num 中间输出nextadd ...

  6. Alpha冲刺! Day12 - 砍柴

    Alpha冲刺! Day12 - 砍柴 今日已完成 晨瑶:终于更了 Gitkraken 团队协作教程. 昭锡:初步学习了解Android动画. 永盛:用户逻辑基本完成. 立强:从众多开源库中找到两个合 ...

  7. Go学习笔记01-环境搭建

    最近想学学Go语言,就在笔记本上配置了Go的环境. 本人的运行环境为:Windows 10 1709. 1.下载安装包 到官网下载安装包,官网网址为:Go安装包下载地址 现在Go的最新版本为1.9.2 ...

  8. Decentraleyes - Local emulation of Content Delivery Networks

    Decentraleyes, 是一个本地化第三方库文件的浏览器插件,提供三十多种语言支持.大致原理如下: 保存常用的第三方库文件到本地,当打开的页面中需要加载的第三方库文件在本地有副本时,随即进行拦截 ...

  9. 五、git创建及合并分支

    1. 创建并切换到dev分支 git checkout -b dev // git checkout命令加上-b参数表示创建并切换,相当于以下两条命令 git branch dev git check ...

  10. Qt+Qgis二次开发:地理实体抽象

    1  概述 地理实体抽象是指点.线.面及其组合而成的,用于描述实际地物的数据结构. 其中包含几何实体和属性数据. GIS中进行几何操作,以各种实体类为基础进行操作. 在OGC中,地理实体可以由WKT表 ...