http://blog.sina.com.cn/s/blog_aed5bd1d0102vid7.html

1.多项式拟合范例:

import matplotlib.pyplot as plt
import numpy as np x = np.arange(1, 17, 1)
y = np.array([4.00, 6.40, 8.00, 8.80, 9.22, 9.50, 9.70, 9.86, 10.00, 10.20, 10.32, 10.42, 10.50, 10.55, 10.58, 10.60])
z1 = np.polyfit(x, y, 3) # 用3次多项式拟合
p1 = np.poly1d(z1)
print(p1) # 在屏幕上打印拟合多项式
yvals=p1(x) # 也可以使用yvals=np.polyval(z1,x)
plot1=plt.plot(x, y, '*',label='original values')
plot2=plt.plot(x, yvals, 'r',label='polyfit values')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.legend(loc=4) # 指定legend的位置,读者可以自己help它的用法
plt.title('polyfitting')
plt.show()
plt.savefig('p1.png')

2.指定函数拟合

# 使用非线性最小二乘法拟合
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import numpy as np
# 用指数形式来拟合
x = np.arange(1, 17, 1)
y = np.array([4.00, 6.40, 8.00, 8.80, 9.22, 9.50, 9.70, 9.86, 10.00, 10.20, 10.32, 10.42, 10.50, 10.55, 10.58, 10.60])
def func(x,a,b):
return a*np.exp(b/x)
popt, pcov = curve_fit(func, x, y)
a=popt[0] # popt里面是拟合系数,读者可以自己help其用法
b=popt[1]
yvals=func(x,a,b)
plot1=plt.plot(x, y, '*',label='original values')
plot2=plt.plot(x, yvals, 'r',label='curve_fit values')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.legend(loc=4) # 指定legend的位置,读者可以自己help它的用法
plt.title('curve_fit')
plt.show()
plt.savefig('p2.png')

python曲线拟合的更多相关文章

  1. Python 曲线拟合

    #曲线拟合 fig = plt.figure() ax = fig.add_subplot(111)#将画布分割成1行1列,图像画在从左到右从上到下的第1块 ax.plot(Num,a,label=u ...

  2. Python数值计算之插值曲线拟合-01

        3 插值与曲线拟合 Interpolation and Curve Fitting 给定n+1个数据点(xi,yi), i = 0,1,2,…,n,评估y(x). 3.1 介绍(introdu ...

  3. python应用 曲线拟合04

    python应用 曲线拟合04 → 多项式拟合 主要是使用 numpy 库中的 polyfit() 函数,见第 66 行, z = np.polyfit(x_proton, y, 3) ,其中待拟合曲 ...

  4. python scipy学习-曲线拟合

    根据某地每月的平均温度[17, 19, 21, 28, 33, 38, 37, 37, 31, 23, 19, 18]拟合温度函数. import numpy as np import matplot ...

  5. Python计算&绘图——曲线拟合问题(转)

    题目来自老师的课后作业,如下所示.很多地方应该可以直接调用函数,但是初学Python,对里面的函数还不是很了解,顺便带着学习的态度,尽量自己动手code. 测试版代码,里面带有很多注释和测试代码: # ...

  6. python构建bp神经网络_曲线拟合(一个隐藏层)__2.代码实现

    IDE:jupyter 抽象程度可能不是那么高,以后再优化. 理论和代码实现的差距还是挺大的 数据集请查看 python构建bp神经网络(一个隐藏层)__1.数据可视化 部分代码预览 git上传.ip ...

  7. python构建bp神经网络_曲线拟合(一个隐藏层)__1.可视化数据

    1.将数据写入csv文件,应该可以python代码直接实现数据集的写入,但我对文件读取这块不太熟练,等我成功了再加上,这里我直接手写将数据集写入Excel 2.然后把后缀改成.csv就可以了,利用pa ...

  8. python应用 曲线拟合03

    问题 有许多待拟合的曲线,需批量拟合. 解决 写一个类 # -*- coding: utf-8 -*- """ @author: kurrrr ""& ...

  9. python应用 曲线拟合 02

    前情提要 CsI 闪烁体晶体+PD+前放输出信号满足: $U(t) = \frac{N_f\tau_p}{\tau_p-\tau_f} \left[ e^{-\frac{t}{\tau_p}}-e^{ ...

随机推荐

  1. k8s总结(脑图图片)

  2. 第八章:四大组件之Content Provider

    前言 Content Provider——Android四大组件之一. 本文要点 1.Content Provider简介 2.URI简介 3.如何访问Content Provider中数据 一.Co ...

  3. mysql 开发进阶篇系列 38 mysql日志之错误日志log-error

    一.mysql日志概述 在mysql中,有4种不同的日志,分别是错误日志,二进制日志(binlog日志),查询日志,慢查询日志.这此日志记录着数据库在不同方面的踪迹(区别sql server里只有er ...

  4. salesforce lightning零基础学习(十) Aura Js 浅谈三: $A、Action、Util篇

    前两篇分别介绍了Component类以及Event类,此篇将会说一下 $A , Action以及 Util.  一. Action Action类通常用于和apex后台交互,设置参数,调用后台以及对结 ...

  5. 高可用Hadoop平台-Oozie工作流

    1.概述 在开发Hadoop的相关应用使用,在业务不复杂,任务不多的情况下,我们可以直接使用Crontab去完成相关应用的调度.今天给大家介绍的是统一管理各种调度任务的系统,下面为今天分享的内容目录: ...

  6. Django集成Markdown编辑器【附源码】

    专注内容写作的你一定不要错过markdown 简单介绍 markdown是一种标记语言,通过简单的标记语法可以使普通的文本内容具有一定的格式,使用非常简单,学习成本极低 目前各大Blog平台都已支持m ...

  7. Zuul过滤器

    1.Zuul过滤器生命周期Zuul大部分功能都是通过过滤器来实现的,Zuul定义了4种标准的过滤器类型,这些过滤器类型对应于请求的典型生命周期.a.pre: 这种过滤器在请求被路由之前调用.可利用这种 ...

  8. 深入学习python解析并读取PDF文件内容的方法

    这篇文章主要学习了python解析并读取PDF文件内容的方法,包括对学习库的应用,python2.7和python3.6中python解析PDF文件内容库的更新,包括对pdfminer库的详细解释和应 ...

  9. vue.js 使用时间组件 日期少一天的问题

    <el-form :inline="true" class="demo-form-inline padding-top-20"> <el-fo ...

  10. Windows下vue-cli脚手架搭建入门<一>

    简单了解Node.js.npm,安装Node.js,下载网址:http://nodejs.cn/download/ 查看node,npm安装成功与否.打开cmd命令行,输入命令 node-v  .np ...