窗函数(window function)经常用在频域信号分析中。我其实不咋个懂,大概是从无限长的信号中截一段出来,然后把这一段做延拓变成一个虚拟的无限长的信号。用来截取的函数就叫窗函数,窗函数又分很多种,什么矩形窗、三角窗、高斯窗。

scipy.signal中有各种我不懂的实现窗函数的方法。浏览了一下,头疼的紧。

那在pandas中也有实现窗函数的方法:rolling()。我呢就不折腾什么信号处理的东西,用金融数据做个小示例好了。

金融时间序列也是一种时间序列数据,前后次序是固定,多为二维数据。例如要看一只股票的平均移动线,就会用到rolling()

先介绍一下这个翻滚函数

DataFrame.rolling(window,
min_periods=None,
freq=None,
center=False,
win_type=None,
on=None,
axis=0)
  • window: 移动窗口的大小。值可以是int(整数值)或offset(偏移)。如果是整数值的话,每个窗口是固定的大小,即包含相同数量的观测值。值为offset(偏移时长,eg:'2s')则指定了每个窗口包含的时间段,每个窗口包含的观测值的数量是不一定的。offset必须在index是时间类型数据时才可以使用。

  • min_periods: 每个窗口最少包含的观测值数量,小于这个值的窗口结果为NA。值可以是int,默认None。offset情况下,默认为1。

  • freq: 弃用。不用管它。

  • center: 把窗口的标签设置为居中。布尔型,默认False,居右。

  • win_type: 窗口的类型。上面介绍的,截取窗的各种函数。字符串类型,默认为None。可用的窗口类型有:

    • boxcar
    • triang
    • blackman
    • hamming
    • bartlett
    • parzen
    • bohman
    • blackmanharris
    • nuttall
    • barthann
    • kaiser (needs beta)
    • gaussian (needs std)
    • general_gaussian (needs power, width)
    • slepian (needs width)
  • on: 可选参数。对于dataframe而言,指定要计算滚动窗口的列。值为列名。

  • axis: int、字符串,默认为0,即对列进行计算。

使用方法,例:

In []: df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})

In []: df.rolling(2).sum()
Out[]:
B
0 NaN
1 1.0
2 3.0
3 NaN
4 NaN

按tab键可以查看rolling对象可用的方法,如下:

In []: r = df.rolling(2)
In []: r
Out[]: Rolling [window=10,center=False,axis=0] In []: r.
r.agg r.cov r.max r.ndim
r.aggregate r.exclusions r.mean r.quantile
r.apply r.is_datetimelike r.median r.skew
r.corr r.is_freq_type r.min r.std
r.count r.kurt r.name r.sum

注:rolling_mean()这种写法已经淘汰了,现在都是df.rolling().mean()df.rolling().std()这样来写。

例:计算苹果收盘价的平均移动线

获取数据

从雅虎获取苹果公司2016年1月1日至今的股票数据。

import pandas_datareader.data as web

apple = web.DataReader(name='AAPL',
data_source='yahoo',
start='2016-1-1')
print(apple.head())

数据大概是这个样子的:

                  Open        High         Low       Close    Volume  \
Date
2016-01-04 102.610001 105.370003 102.000000 105.349998 67649400
2016-01-05 105.750000 105.849998 102.410004 102.709999 55791000
2016-01-06 100.559998 102.370003 99.870003 100.699997 68457400
2016-01-07 98.680000 100.129997 96.430000 96.449997 81094400
2016-01-08 98.550003 99.110001 96.760002 96.959999 70798000 Adj Close
Date
2016-01-04 103.057063
2016-01-05 100.474523
2016-01-06 98.508268
2016-01-07 94.350769
2016-01-08 94.849671

收盘价的折线图

为了方便观察滚完了之后的效果,我们把数据都画图呈现出来。

apple['Close'].plot(figsize=(9, 5), grid=True)
plt.show()
 
收盘价

平均移动线MA

apple['roll_mean'] = apple['Close'].rolling(window=5).mean()
apple[['Close', 'roll_mean']].plot(subplots=True, figsize=(9, 5), grid=True)
plt.show()
 
收盘价和5日平均移动线

这里窗口大小为5,所以前面四个数据是没有值的。把它们合在一起看看(把subplots改为False)。

 
收盘价和5日平均移动线合在一起

拉近一点:

 
 

直观上看更平滑了。毕竟取五天做平均了,第一天涨第二天跌的这种一平均波动就小了。如果窗口变大会更平滑。

windowsize = [5,10,20]
for i in windowsize:
apple['roll_mean_'+str(i)] = apple['Close'].rolling(i).mean()
apple[['roll_mean_5','roll_mean_10','roll_mean_20']].plot(figsize=(9, 5), grid=True)
plt.show()
 
 

补充

除了算平均值,还可以计算方差、相关、最大最小值等等,大部分的统计量都可以计算,就看你需要了。

另外如果已有的函数不能满足需要,我们还可以用lambdaapply()写自己的方法。

例如(直接复制官网的咯):

mad = lambda x: np.fabs(x - x.mean()).mean()
apple['Close'].rolling(window=5).apply(mad).plot(figsize=(9, 5), grid=True)
plt.show()

这里计算的是平均绝对偏差。

 
 

我的图长得漂亮是因为安装了seaborn库,画图之前悄悄加载了一下。

另外,pandas中也有好些金融函数,比如计算指数加权移动平均,就现成的pandas.ewma()。待挖掘的东西好多呢。

作者:ChZ_CC
链接:https://www.jianshu.com/p/f6e489de57f7
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Python数据分析_Pandas_窗函数的更多相关文章

  1. Python数据分析基础教程

    Python数据分析基础教程(第2版)(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1_FsReTBCaL_PzKhM0o6l0g 提取码:nkhw 复制这段内容后 ...

  2. [Python数据分析]新股破板买入,赚钱几率如何?

    这是本人一直比较好奇的问题,网上没搜到,最近在看python数据分析,正好自己动手做一下试试.作者对于python是零基础,需要从头学起. 在写本文时,作者也没有完成这个小分析目标,边学边做吧. == ...

  3. 【Python数据分析】Python3多线程并发网络爬虫-以豆瓣图书Top250为例

    基于上两篇文章的工作 [Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 [Python数据分析]Python3操作Excel(二) 一些问题的解决与优化 已经正确地实现 ...

  4. 【Python数据分析】Python3操作Excel(二) 一些问题的解决与优化

    继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛 ...

  5. 【搬砖】【Python数据分析】Pycharm中plot绘图不能显示出来

    最近在看<Python数据分析>这本书,而自己写代码一直用的是Pycharm,在练习的时候就碰到了plot()绘图不能显示出来的问题.网上翻了一下找到知乎上一篇回答,试了一下好像不行,而且 ...

  6. Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识

    Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...

  7. Python数据分析(二): Numpy技巧 (1/4)

    In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  

  8. Python数据分析(二): Numpy技巧 (2/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

  9. Python数据分析(二): Numpy技巧 (3/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

随机推荐

  1. 用C#学习数据结构之链表

    单链表的定义 链表是用一组任意的存储单元来存储线性表中的数据元素(这组存储单元可以是连续的,也可以是不连续的).那么,怎么表示两个数据元素逻辑上的相邻关系呢?即如何表示数据元素之间的线性关系呢?为此, ...

  2. 读vue-0.6-utils.js源码

    typeOf typeOf: function (obj) { return toString.call(obj).slice(8, -1) } 每个对象都有一个 toString() 方法,当对象被 ...

  3. springboot json返回null问题处理

    在开发过程中,我们需要统一返回前端json格式的数据,但有些接口的返回值存在 null或者""这种没有意义的字段.以上不仅影响理解,还浪费带宽,这时我们可以统一做一下处理:不返回空 ...

  4. 3张表实现RBAC

    管理员表 CREATE TABLE cqh_admin ( id smallint unsigned not null auto_increment comment 'id', username va ...

  5. php 常用$_SERVER变量列表

    $_SERVER['HTTP_ACCEPT_LANGUAGE'] //浏览器语言 $_SERVER['REMOTE_ADDR'] //当前用户 IP . $_SERVER['REMOTE_HOST'] ...

  6. WebService与RMI(远程调用方式实现系统间通信)

    前言 本文是<分布式java应用基础与实践>读书笔记:另外参考了此博客,感觉讲的挺好的,尤其是其中如下内容: 另外,消息方式实现系统间通信本文不涉及.RMI则只采用spring RMI框架 ...

  7. Session会话保持机制的原理与Tomcat Session共享的几种实现方式(Session Cluster、memcached+MSM)

    一.Session的定义 在计算机科学中,特别是在网络中,session是两个或更多个通信设备之间或计算机和用户之间的临时和交互式信息交换.session在某个时间点建立,然后在之后的某一时间点拆除. ...

  8. IE8浏览器官方下载 包含Windows中繁英文各个版本

    当你的Windows XP安裝IE8时提示"此安装不支持您的操作系统的当前语言",或者安装IE8,在语言包安装时报错,可以尝试使用先安装英文版本,再安装多国语言包的方式操作. 20 ...

  9. C++中析构函数的作用

    如果构造函数打开了一个文件,最后不需要使用时文件就要被关闭.析构函数允许类自动完成类似清理工作,不必调用其他成员函数. 析构函数也是特殊的类成员函数.简单来说,析构函数与构造函数的作用正好相反,它用来 ...

  10. Netty网络聊天(一) 聊天室实战

    首发地址; Netty网络聊天(一) 聊天室实战 之前做过一个IM的项目,里面涉及了基本的聊天功能,所以注意这系列的文章不是练习,不含基础和逐步学习的部分,直接开始实战和思想引导,基础部分需要额外的去 ...