UVA 10129 Play on Words (欧拉通路)
本文链接:http://www.cnblogs.com/Ash-ly/p/5398627.html
题意:
输入N(N <= 100000)个单词,是否可以把所有这些单词排成一个序列,使得每个单词的第一个字母和上一个单词的最后一个字母相同(例如:acm,malform,mouse)。每个单词最多包含 1000 个小写字母。输入中可以有重复的单词。
思路:
把一个字母的两端开成节点,单词看成有向边,若问题有借,当且仅当图中存在欧拉通路。所有只需要判断由单词而构建的图是否存在欧拉通路,由于是有向边,所以利用有向图欧拉通路的判定就可以了。
判定条件
(1):底图是连通图
(2):可以有两个奇点,其中一个出度比入度大 1,另外一个入度比出度大1.
对于条件1,在这里用并查集判断了,条件2统计每个点的出度,入度,加以判断就行了.
代码:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std; const int maxV = ;
int m;
int pre[maxV + ];
int outdegree[maxV + ];
int indegree[maxV + ]; int Find(int x){return x == pre[x] ? x : pre[x] = Find(pre[x]); }//并查集的查找
void initPre(){ for(int i = ; i <= maxV; i++) pre[i] = i; }//初始化并查集的数组 int mix(int x, int y)//并查集的合并
{
int fx = Find(x), fy = Find(y);
if(fx != fy) pre[fx] = fy;
} bool isConnct()//判断图是否连通,即所有的点都在一个集合里面
{
int cnt = ;
for(int i = ; i <= maxV; i++)if( (outdegree[i] != || indegree[i] != ) && pre[i] == i) cnt++;
if(cnt == )return true;
return false;
} bool isEulur()//是否存在欧拉通路
{
int cnt = ;
int flag = ;
for(int i = ; i <= ; i++)
if((outdegree[i] != || indegree[i] != ) && (indegree[i] != outdegree[i]))//判断奇点,方法不唯一。
{
cnt++;
flag += (indegree[i] - outdegree[i]);
if(flag > || flag < -) return false;
}
if(cnt == || cnt == && flag == ) return true;
return false;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &m);
initPre();
memset(indegree, , sizeof(indegree));
memset(outdegree, , sizeof(outdegree));
for(int i = ; i <= m; i++)
{
char word[ + ];
scanf("%s", word);
int u = word[] - 'a' + ;
int len = strlen(word);
int v = word[len - ] - 'a' + ;
mix(u, v);
++outdegree[u];
++indegree[v];
}
if(isEulur() && isConnct()) printf("Ordering is possible.\n");
else printf("The door cannot be opened.\n");
}
return ;
}
UVA 10129 Play on Words (欧拉通路)的更多相关文章
- ACM/ICPC 之 DFS求解欧拉通路路径(POJ2337)
判断是欧拉通路后,DFS简单剪枝求解字典序最小的欧拉通路路径 //Time:16Ms Memory:228K #include<iostream> #include<cstring& ...
- POJ 1300 欧拉通路&欧拉回路
系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...
- poj 2513 连接火柴 字典树+欧拉通路 好题
Colored Sticks Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 27134 Accepted: 7186 ...
- poj2513- Colored Sticks 字典树+欧拉通路判断
题目链接:http://poj.org/problem?id=2513 思路很容易想到就是判断欧拉通路 预处理时用字典树将每个单词和数字对应即可 刚开始在并查集处理的时候出错了 代码: #includ ...
- hdu1116有向图判断欧拉通路判断
Play on Words Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Colored Sticks POJ - 2513 并查集+欧拉通路+字典树hash
题意:给出很多很多很多很多个棒子 左右各有颜色(给出的是单词) 相同颜色的可以接在一起,问是否存在一种 方法可以使得所以棒子连在一起 思路:就是一个判欧拉通路的题目,欧拉通路存在:没奇度顶点 或者 ...
- 欧拉回路&欧拉通路判断
欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路.具有欧拉回路的图成为欧拉图. 判断欧拉通路是否存在的方法 ...
- POJ2513Colored Sticks(欧拉通路)(字典树)(并查集)
Colored Sticks Time Limit: 5000MS Memory ...
- HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路
给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值. 首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为 ...
随机推荐
- Linux之Permission denied没有权限
在Linux上启动solr时,出现-bash: ./solr: Permission denied的问题. 最简单的解决方式: chmod 777 solr 傻瓜式直接赋予权限
- maven常用命令 与语法
pom.xml 中个元素的意义 groupId 规定了这个项目属于哪个组,或者公司之类的 artifactId 定义了当前maven项目在组中唯一的ID version 版本号 常用命令 mvn co ...
- win10 ubuntu16双系统安装教程
一. 知识准备 1.材料 前提: 本文档是在win10 64位下进行安装的!32位的安装注意其中的一些细节即可 硬件: X86_64 位电脑 硬盘有 40G 空闲 软件:[百度搜索即可] (1) Ul ...
- 软工实践 - 第十五次作业 Alpha 冲刺 (6/10)
队名:起床一起肝活队 组长博客:https://www.cnblogs.com/dawnduck/p/10004469.html 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过 ...
- 二、vue响应式对象
Object.defineProperty Object.defineProperty 方法会直接在一个对象上定义一个新属性,或者修改一个对象的现有属性, 并返回这个对象,先来看一下它的语法: Obj ...
- [洛谷P3857][TJOI2008]彩灯
题目大意:有$n$盏灯,$m$个开关($n,m\leqslant 50$),每个开关可以控制的灯用一串$OX$串表示,$O$表示可以控制(即按一下,灯的状态改变),$X$表示不可以控制,问有多少种灯的 ...
- Hash表模板
namespace Hash { ; ; struct adj { ll nxt,v,num,val; }e[N]; ll head[H],ecnt=; void init() { ecnt=; me ...
- 【CZY选讲·黑白染色】
题目描述 给出平面上n 个点,试将他们黑白染色,要求染色后无法用一条直线把黑白完全分开. 随便输出一种方案. 数据范围 n<=100000 题解: ①点数很多,但是可以发现至多需 ...
- javascript 中 click 和onclick有什么区别呢
<script type="text/javascript"> $(function(){ $("#btn4").click(function(){ ...
- 蓝萝卜blu netty3升netty4
老项目是netty3的,本来想直接改到netty5,但是netty5居然是只支持jdk1.7,很奇怪jdk1.6和jdk1.8都不行..为了兼容jdk1.6加上netty4本来和netty5就差别不大 ...