Codeforces 570D - Tree Requests(树上启发式合并)
570D - Tree Requests
题意
给出一棵树,每个节点上有字母,查询 u k,问以 u 为根节点的子树下,深度为 k 的所有子节点上的字母经过任意排列是否能构成回文串。
分析
一个数组 \(C[i][j]\) 表示深度为 \(i\) 字母为 \(j\) 的数量,数组 \(odd[i]\) 表示深度为 \(i\) 时出现次数为奇数的字母种数。
如果想要构成回文串,那么某一深度下出现的次数为奇数的字母不能超过一种,注意如果字符串长度为 0 也叫回文串。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 5e5 + 10;
int n;
int fa[MAXN], son[MAXN], dep[MAXN], siz[MAXN];
int col[MAXN];
int cnt, head[MAXN];
struct Edge {
int to, next;
} e[MAXN << 1];
struct Ex {
int x, c;
};
vector<Ex> ex[MAXN];
void addedge(int u, int v) {
e[cnt].to = v; e[cnt].next = head[u]; head[u] = cnt++;
e[cnt].to = u; e[cnt].next = head[v]; head[v] = cnt++;
}
void dfs(int u) {
siz[u] = 1;
son[u] = 0;
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u]) {
fa[e[i].to] = u;
dep[e[i].to] = dep[u] + 1;
dfs(e[i].to);
if(siz[e[i].to] > siz[son[u]]) son[u] = e[i].to;
siz[u] += siz[e[i].to];
}
}
}
int vis[MAXN], ans[MAXN];
int mk[MAXN];
int C[MAXN][30], odd[MAXN], num[MAXN];
void change(int u, int c) {
C[dep[u]][mk[u]] += c;
num[dep[u]] += c;
if(C[dep[u]][mk[u]] & 1) odd[dep[u]]++;
else odd[dep[u]]--;
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u] && !vis[e[i].to]) change(e[i].to, c);
}
}
void dfs1(int u, int flg) {
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u] && e[i].to != son[u]) dfs1(e[i].to, 1);
}
if(son[u]) {
dfs1(son[u], 0);
vis[son[u]] = 1;
}
change(u, 1);
int sz = ex[u].size();
for(int i = 0; i < sz; i++) {
ans[ex[u][i].x] = (odd[ex[u][i].c] <= 1 || num[ex[u][i].c] == 0);
}
if(son[u]) vis[son[u]] = 0;
if(flg) change(u, -1);
}
char ss[MAXN];
int main() {
int m;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof head);
cnt = 0;
dep[1] = 1;
for(int i = 2; i <= n; i++) {
int x;
scanf("%d", &x);
addedge(i, x);
}
scanf("%s", ss);
for(int i = 0; i < n; i++) {
mk[i + 1] = ss[i] - 'a';
}
dfs(1);
for(int i = 0; i < m; i++) {
int x, y;
scanf("%d%d", &x, &y);
ex[x].push_back(Ex{i, y});
}
dfs1(1, 0);
for(int i = 0; i < m; i++) {
puts(ans[i] ? "Yes" : "No");
}
return 0;
}
Codeforces 570D - Tree Requests(树上启发式合并)的更多相关文章
- Codeforces 570D TREE REQUESTS dfs序+树状数组 异或
http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory li ...
- codeforces 375D . Tree and Queries 启发式合并 || dfs序+莫队
题目链接 一个n个节点的树, 每一个节点有一个颜色, 1是根节点. m个询问, 每个询问给出u, k. 输出u的子树中出现次数大于等于k的颜色的数量. 启发式合并, 先将输入读进来, 然后dfs完一个 ...
- Codeforces 570D TREE REQUESTS dfs序+树状数组
链接 题解链接:点击打开链接 题意: 给定n个点的树.m个询问 以下n-1个数给出每一个点的父节点,1是root 每一个点有一个字母 以下n个小写字母给出每一个点的字母. 以下m行给出询问: 询问形如 ...
- Codeforces 570D - Tree Requests【树形转线性,前缀和】
http://codeforces.com/contest/570/problem/D 给一棵有根树(50w个点)(指定根是1号节点),每个点上有一个小写字母,然后有最多50w个询问,每个询问给出x和 ...
- CodeForces 570D - Tree Requests - [DFS序+二分]
题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...
- codeforces 570D.Tree Requests
[题目大意]: 给定一棵树,树的每个节点对应一个小写字母字符,有m个询问,每次询问以vi为根节点的子树中,深度为hi的所有节点对应的字符能否组成一个回文串: [题目分析]: 先画个图,可看出每次询问的 ...
- 总结-DSU ON TREE(树上启发式合并)
考试遇到一道题: 有一棵n个点的有根树,每个点有一个颜色,每次询问给定一个点\(u\)和一个数\(k\),询问\(u\)子是多少个不同颜色节点的\(k\)级祖先.n<=500000. 显然对每一 ...
- dsu on tree (树上启发式合并) 详解
一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...
- 神奇的树上启发式合并 (dsu on tree)
参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...
随机推荐
- Windows下安装PHP及开发环境配置
一.Apache 因为Apache官网只提供源代码,如果要使用必须得自己编译,这里我选择第三方安装包Apache Lounge. 1. 进入Apachelounge官方下载地址:http://www. ...
- APP测试用例要考虑的一些方面
安装与卸载:●应用是否可以在IOS不同系统版本或android不同系统版本上安装(有的系统版本过低,应用不能适配)●软件安装后是否可以正常运行,安装后的文件夹及文件是否可以写到指定的目录里.●安装过程 ...
- CS/BS架构的特点
CS架构 优点: 1.有独立的客户端,安全性高 2.大部分业务都在客户端实现,可以实现很复杂的业务 缺点: 1.对环境要求高,需要安装客户端,推广速度慢 2.需要专门前后台的开发团队,维护成本高 B/ ...
- django-settings里mysql连接配置
DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'dailyfresh', 'HOST': 'loca ...
- 原始套接字--icmp相关
icmp请求 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <uni ...
- 创建虚拟机流程nova
这篇博文借鉴于http://www.cnblogs.com/yjbjingcha/p/6977741.html,感谢博友提供. 本文试图具体地描写叙述openstack创建虚拟机的完整过程.从用户发起 ...
- nio的reactor模式
转自:http://blog.csdn.net/it_man/article/details/38417761 线程状态转换图 就是非阻塞IO 采用多路分发方式举个例子吧,你服务器做一个聊天室,按照以 ...
- GYM - 101147 C.The Wall
题意: 长和宽分别为M+N/2,N的矩形中.有很多敌人的点.有两种方法消灭敌人. 1.N个桶,第i个桶可以消灭i-1<=x<i中的敌人.2.M个摆(半圆)每个摆可以消灭距离他前面不超过1以 ...
- [xsy1129] flow [树链剖分和线段树一起优化网络流][我也不知道这是什么鬼标签]
题面 内部OJ 思路 考虑一个决策方案${x}$,$x_i$表示第$i$个点选不选,$f^k_i$表示点$i$的第$k$个父亲 那么可以得到总花费的表达式$ans=\sum V_i x_i - \su ...
- flex弹性布局的基本介绍
最近开始做元素排列比较复杂的项目,同时需要各种型号手机的适配,我发现以前所掌握的盒子模型.display.position.float等已经不能满足我的需求了, 于是开始着重学习flex弹性布局并运用 ...