K-th Number
Time Limit: 20000MS   Memory Limit: 65536K
Total Submissions: 52651   Accepted: 18091
Case Time Limit: 2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1...n] of different integer numbers, your
program must answer a series of questions Q(i, j, k) in the form: "What
would be the k-th number in a[i...j] segment, if this segment was
sorted?"

For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the
question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort
this segment, we get (2, 3, 5, 6), the third number is 5, and therefore
the answer to the question is 5.

Input

The
first line of the input file contains n --- the size of the array, and m
--- the number of questions to answer (1 <= n <= 100 000, 1 <=
m <= 5 000).

The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.

The following m lines contain question descriptions, each
description consists of three numbers: i, j, and k (1 <= i <= j
<= n, 1 <= k <= j - i + 1) and represents the question Q(i, j,
k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.
【分析】第一道划分树,懂了一丝,继续努力。。。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define lson(x) ((x<<1))
#define rson(x) ((x<<1)+1)
using namespace std;
typedef long long ll;
const int N=1e5+50;
const int M=N*N+10;
struct P_Tree {
    int n;
    int tree[20][N];
    int sorted[N];
    int toleft[20][N];
    void init(int len) {
        n=len;
        for(int i=0; i<20; i++)tree[i][0]=toleft[i][0]=0;
        for(int i=1; i<=n; i++) {
            scanf("%d",&sorted[i]);
            tree[0][i]=sorted[i];
        }
        sort(sorted+1,sorted+n+1);
        build(1,n,0);
    }
    void build(int l,int r,int dep) {
        if(l==r)return;
        int mid=(l+r)>>1;
        int same=mid-l+1;
        for(int i=l; i<=r; i++)
            if(tree[dep][i]<sorted[mid])
                same--;
        int lpos=l;
        int rpos=mid+1;
        for(int i=l; i<=r; i++) {
            if(tree[dep][i]<sorted[mid]) { //去左边
                tree[dep+1][lpos++]=tree[dep][i];             } else if(tree[dep][i]==sorted[mid]&&same>0) { //去左边
                tree[dep+1][lpos++]=tree[dep][i];
                same--;
            } else //去右边
                tree[dep+1][rpos++]=tree[dep][i];
            toleft[dep][i]=toleft[dep][l-1]+lpos-l;//从1到i放左边的个数
        }
        build(l,mid,dep+1);//递归建树
        build(mid+1,r,dep+1);
    }
    int query(int L,int R,int l,int r,int dep,int k) {
        if(l==r)return tree[dep][l];
        int mid=(L+R)>>1;
        int cnt=toleft[dep][r]-toleft[dep][l-1];
        if(cnt>=k) {
            //L+查询区间前去左边的数的个数
            int newl=L+toleft[dep][l-1]-toleft[dep][L-1];
            //左端点+查询区间会分入左边的数的个数
            int newr=newl+cnt-1;
            return query(L,mid,newl,newr,dep+1,k);//注意
        } else {
            //r+区间后分入左边的数的个数
            int newr=r+toleft[dep][R]-toleft[dep][r];
            //右端点减去区间分入右边的数的个数
            int newl=newr-(r-l-cnt);
            return query(mid+1,R,newl,newr,dep+1,k-cnt);//注意
        }
    }
}tre;
int main() {
    int n,m;
    int u,v,w;
    while(~scanf("%d%d",&n,&m)) {
        tre.init(n);
        while(m--) {
            scanf("%d%d%d",&u,&v,&w);
            printf("%d\n",tre.query(1,n,u,v,0,w));
        }
    }
    return 0;
}

POJ 2104 K-th Number (划分树)的更多相关文章

  1. 【POJ 2104】 K-th Number 主席树模板题

    达神主席树讲解传送门:http://blog.csdn.net/dad3zz/article/details/50638026 2016-02-23:真的是模板题诶,主席树模板水过.今天新校网不好,没 ...

  2. poj 2104 K-th Number 划分树,主席树讲解

    K-th Number Input The first line of the input file contains n --- the size of the array, and m --- t ...

  3. 静态区间第k大(划分树)

    POJ 2104为例[经典划分树问题] 思想: 利用快速排序思想, 建树时将区间内的值与区间中值相比,小于则放入左子树,大于则放入右子树,如果相等则放入左子树直到放满区间一半. 查询时,在建树过程中利 ...

  4. [NBUT 1458 Teemo]区间第k大问题,划分树

    裸的区间第k大问题,划分树搞起. #pragma comment(linker, "/STACK:10240000") #include <map> #include ...

  5. poj 2104 K-th Number (划分树入门 或者 主席树入门)

    题意:给n个数,m次询问,每次询问L到R中第k小的数是哪个 算法1:划分树 #include<cstdio> #include<cstring> #include<alg ...

  6. POJ 2104 K-th Number(划分树)

    题目链接 参考HH大神的模版.对其中一些转移,还没想清楚,大体明白上是怎么回事了,划分树就是类似快排,但有点点区别的.多做几个题,慢慢理解. #include <cstdio> #incl ...

  7. hdu 2665 Kth number (poj 2104 K-th Number) 划分树

    划分树的基本功能是,对一个给定的数组,求区间[l,r]内的第k大(小)数. 划分树的基本思想是分治,每次查询复杂度为O(log(n)),n是数组规模. 具体原理见http://baike.baidu. ...

  8. [hdu2665]Kth number(划分树求区间第k大)

    解题关键:划分树模板题. #include<cstdio> #include<cstring> #include<algorithm> #include<cs ...

  9. hdu 2665 Kth number(划分树模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=2665 [ poj 2104 2761 ]  改变一下输入就可以过 http://poj.org/problem? ...

  10. HDU 2665 Kth number(划分树)

    Kth number Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

随机推荐

  1. save?commit

    数据库的隐式提交 先看一段SQL,最后一条SQL的输出你认为是什么? 1 2 3 4 5 6 7 SET AUTOCOMMIT = 1; BEGIN; INSERT INTO t1 VALUES (1 ...

  2. 【LeetCode】Swap Nodes in Pairs(两两交换链表中的节点)

    这是LeetCode里的第24题. 题目要求: 给定一个链表,两两交换其中相邻的节点,并返回交换后的链表. 示例: 给定1->2->3->4, 你应该返回2->1->4- ...

  3. JSP/Servlet Web 学习笔记 DayFour

    Servlet概述 Servelt是使用Java Servlet应用程序接口及相关类和方法的Java程序. Servlet是用Java编写的Server端程序,它与协议和平台无关.Servlet运行于 ...

  4. Android记事本09

    昨天: Activity的数据传递. 今天: 从Activity中返回数据 请求码和返回码的作用 遇到的问题: 无.

  5. 团队冲刺Alpha(九)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...

  6. java安全提交笔记【xmind图片】

  7. finally代码块不被执行的情况总结

    以前跟别人讨论finally关键字,我总是简单的说:“fianly代码块中的代码一定会执行,一般用来清除IO资源等非内存资源(内存资源由GC机制回收)”. 今天翻书发现了几种不会执行的情况,现在总结下 ...

  8. 以太坊源码分析(52)以太坊fast sync算法

    this PR aggregates a lot of small modifications to core, trie, eth and other packages to collectivel ...

  9. ci动态设置config配置

    $this->config->set_item('cookie', 'item_value');echo $this->config->item('cookie');

  10. linux fg bg ctrl + z jobs & 等命令

    fg.bg.jobs.&.ctrl + z都是跟系统任务有关的,虽然现在基本上不怎么需要用到这些命令,但学会了也是很实用的一.& 最经常被用到这个用在一个命令的最后,可以把这个命令放到 ...