特殊矩阵

通用特殊矩阵

zeros函数:产生全0矩阵,即零矩阵。

ones函数:产生....1矩阵,即幺矩阵。

eye函数:产生对角线为1的矩阵,当矩阵是方正时,得到单位矩阵。

rand函数:产生(0,1)区间均匀分布的随机矩阵。

randn函数:产生均值为0,方差为1的标准正态分布随机矩阵。

------------------------------------------------------------------------------------------------

zeros(m):产生mxm的零矩阵。

zeros(m,n):....mxn...

zeros(size(A)):产生跟A相同大小的矩阵,A是几维,零矩阵为几维。

fix(a+(b-a+1)*x):产生[a,b]区间上均匀分布的随机数。

u+fx:均值为u,方差为f^2的随机数。

eye(m,n)产生mxn的单位矩阵、

m与n不相等时,则会产生一行或一列0.

(1)魔族矩阵:magic(3)    每行,列对角都为15(1+2+3+...+n^2)/n=(n+n^3)/2

(2)范德蒙矩阵:v=[v1,v2....,vn];

...

vander(v)..............vander(1:5)

(3)希尔伯特矩阵

(4)伴随矩阵

(5)帕斯卡矩阵

根据:二项式定理,(x+y)^n随n的增长展开后为杨辉三角。

而将二项式洗漱依次填写在左侧对角线上,然后提取左侧的n行n列元素即为n阶帕斯卡矩阵。

p=pascal(5)                     inv(p)逆矩阵

矩阵变换

 对角矩阵:只有对角线上有非零元素的矩阵
数量矩阵:....相等...
单位矩阵:...都为1...
提取对角线:diag(A):提取矩阵A主对角元素产生一个列向量
 
diag(A,k)提取第k条对角线,产生一个列向量。
 
对角阵:
 
diag(v):以列向量v为主对角线元素,产生对角矩阵。
 
diag(v,k):...第k条....
 
a*diag(1:3):主对角线分别乘以1,2,3.
 
a(:,1)*diag(a)
a第一列分别对应与主对角线相乘
 
a.*diag(i)  a的对角线与1-3对应相乘                      a*diag(1:3)   a的第一列乘1  第二列乘2  第三列乘3
 
求上三角矩阵:对角线以下为0,
 
triu(A):提主对角线以上的与元素。                   triu(A,k)......k条对角线以上
 
下三角矩阵:.....以上为0     tril与triu用法相同
 

矩阵的转置:

 
转置运算符是小数点后接单引号(.')=>相当于由横变为纵排列
 
共轭转置:运算符是( ' ),它在转置基础上还要取每个数的复共轭。
 
旋转:
 
rot90(A,k):将矩阵A逆时针旋转90度的k倍,k为1可省略。
 
翻转:
 
fliplr(A):对矩阵A实施左右翻转。           flipud(A):..........上下......(第一与倒数第一...)
 
逆矩阵:对于同阶的矩阵A,B若AB=BA=I(I为单位矩阵),则A,B互为逆矩阵。
 
inv(A):求A的逆矩阵...(参考例题)

MATLAB特殊矩阵以及矩阵转置的更多相关文章

  1. MATLAB命令大全和矩阵操作大全

    转载自: http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示在MATLAB中创建矩阵 ...

  2. MATLAB 求两个矩阵的 欧氏距离

    欧式距离定义: 欧式距离公式有如下几种表示方法: MATLAB 求两个矩阵的 欧氏距离 : 如果定义两个矩阵分别为a,b则定义c=(a-b).^2所求距离d=sqrt(sum(c(:)))

  3. MATLAB 的向量,矩阵和阵列命令

    MATLAB 的向量,矩阵和阵列命令:

  4. Python 矩阵与矩阵以及矩阵与向量的乘法

    import numpy as np numpy模块的array相乘时,有两种方式:一是矩阵形式,二是挨个相乘. 需要用矩阵形式相乘时,则要用np.dot()函数. #矩阵与矩阵相乘a = np.ar ...

  5. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  6. C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速

    Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...

  7. POJ - 3233 矩阵套矩阵

    题意:给你矩阵\(A\),求\(S=\sum_{i=1}^{k}A^i\) 构造矩阵 \[ \begin{bmatrix} A & E \\ 0 & E\\ \end{bmatrix} ...

  8. hdu 1588 Gauss Fibonacci(矩阵嵌矩阵)

    题目大意: 求出斐波那契中的 第 k*i+b 项的和. 思路分析: 定义斐波那契数列的矩阵 f(n)为斐波那契第n项 F(n) = f(n+1) f(n) 那么能够知道矩阵 A = 1 1 1  0 ...

  9. AcWing 206. 石头游戏 矩阵乘法|矩阵快速幂

    AcWing 206. 石头游戏 石头游戏在一个 n 行 m 列 (1≤n,m≤8) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这10个数字指明. 操作序列是一个长度不 ...

随机推荐

  1. [译]Javascript的弱点

    本文翻译youtube上的up主kudvenkat的javascript tutorial播放单 源地址在此: https://www.youtube.com/watch?v=PMsVM7rjupU& ...

  2. winform GDI基础(三)实现画笔

    在程序窗口上使用鼠标画图 private Point pStart, pEnd; private bool isAllowDraw = false; private bool isOpenPen = ...

  3. POJO 与 JavaBean 的区别 !

    $说明: POJO :全称(Plain Old Java Object)翻译为“普通旧Java对象” 通俗理解为“一个简单的java对象”. JavaBean: 是一种JAVA语言写成的可重用组件,是 ...

  4. go语言实战教程之 后台管理页面统计功能开发(1)

    本节内容我们将学习开发实现后台管理平台页面统计功能开发的功能接口,本章节内容将涉及到多种请求路由的方式. 功能介绍 后台管理平台不仅是功能管理平台,同时还是数据管理平台.从数据管理平台角度来说,在管理 ...

  5. New Distinct Substrings(后缀数组)

    New Distinct Substrings(后缀数组) 给定一个字符串,求不相同的子串的个数.\(n<=50005\). 显然,任何一个子串一定是后缀上的前缀.先(按套路)把后缀排好序,对于 ...

  6. iOS端VR视频播放(转自简书http://www.jianshu.com/p/1ee1a0d1d320)

    下面是我看了谷歌的一个VR在iOS端开发的文档写的一个demo. 第一步是需要用cocoaPods导入谷歌开发的一个第三方:CardboardSDK,怎么导入就不多说了,这里需要注意的一点是谷歌方面的 ...

  7. 传球游戏 dp

    题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:nnn个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每 ...

  8. java 在web应用中获取本地目录和服务器上的目录不一致的问题

    先来讲讲我所遇到的问题.最近有个新的项目添加新的功能. 修改之后部署到服务器上面发现取到classpath目录跑到别的地方去了.在本地测试却正常. 当时毛的着火了.硬是想不懂什么问题. 终于发现了这个 ...

  9. java 反射 处理 空值

    package org.zkdg.utils.spring.annotations.impl; import java.lang.annotation.Annotation; import java. ...

  10. spring 配置properties 编码

    <!-- properties 配置文件 --> <bean id="propertyConfigurer" class="org.springfram ...