B-树 B+树 红黑树
B树是一种多路平衡查找树,它的每一个节点最多包含k个孩子,k被称为B树的阶。k的大小取决于磁盘页的大小。B树主要应用于文件系统以及部分数据库索引,比如著名的非关系型数据库MongoDB。
一个m阶的B树具有如下几个特征:
1.根结点至少有两个子女。
2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m
3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m
4.所有的叶子结点都位于同一层。
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。
一个m阶的B+树具有如下几个特征:
1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。
2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。
B+树的优势:
1.单一节点存储更多的元素,使得查询的IO次数更少。
2.所有查询都要查找到叶子节点,查询性能稳定。
3.所有叶子节点形成有序链表,便于范围查询。
红黑树的5个性质:
(1)每个结点要么是红的要么是黑的。
(2)根结点是黑的。
(3)每个叶结点(叶结点即指树尾端NIL指针或NULL结点)都是黑的。
(4)如果一个结点是红的,那么它的两个儿子都是黑的。
(5)对于任意结点而言,其到叶结点树尾端NIL指针的每条路径都包含相同数目的黑结点。
正是红黑树的这5条性质,使一棵n个结点的红黑树始终保持了logn的高度。红黑树的查找、插入、删除的时间复杂度最坏为O(logn)
B-树 B+树 红黑树的更多相关文章
- 1.红黑树和自平衡二叉(查找)树区别 2.红黑树与B树的区别
1.红黑树和自平衡二叉(查找)树区别 1.红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单. 2.平衡 ...
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...
- 从二叉查找树到平衡树:avl, 2-3树,左倾红黑树(含实现代码),传统红黑树
参考:自平衡二叉查找树 ,红黑树, 算法:理解红黑树 (英文pdf:红黑树) 目录 自平衡二叉树介绍 avl树 2-3树 LLRBT(Left-leaning red-black tree左倾红黑树 ...
- 从二叉搜索树到AVL树再到红黑树 B树
这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查 ...
- 简述树,Trie,Avl,红黑树
树的表示方法 在平时工作中通常有2种方式来表示树状结构,分别是孩子链表示法和父节点表示法.光说名词可能无法让人联系到实际场景中,但是写出代码之后大家一定就明白了. 孩子链表示法,即将树中的每个结点的孩 ...
- 红黑树、B(+)树、跳表、AVL等数据结构,应用场景及分析,以及一些英文缩写
在网上学习了一些材料. 这一篇:https://www.zhihu.com/question/30527705 AVL树:最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间 ...
- 大名鼎鼎的红黑树,你get了么?2-3树 绝对平衡 右旋转 左旋转 颜色反转
前言 11.1新的一月加油!这个购物狂欢的季节,一看,已囊中羞涩!赶紧来恶补一下红黑树和2-3树吧!红黑树真的算是大名鼎鼎了吧?即使你不了解它,但一定听过吧?下面跟随我来揭开神秘的面纱吧! 一.2-3 ...
- 对B+树,B树,红黑树的理解
出处:https://www.jianshu.com/p/86a1fd2d7406 写在前面,好像不同的教材对b树,b-树的定义不一样.我就不纠结这个到底是叫b-树还是b-树了. 如图所示,区别有以下 ...
- 红黑树与AVL树
概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...
- AVL树与红黑树
平衡树是平时经常使用数据结构. C++/JAVA中的set与map都是通过红黑树实现的. 通过了解平衡树的实现原理,可以更清楚的理解map和set的使用场景. 下面介绍AVL树和红黑树. 1. AVL ...
随机推荐
- WarTransportation TopCoder - 8404
传送门 分析 我们高兴的发现数据范围特别小,所以我们可以随便搞.因为一共只砍掉一条路,所以我们先算出对于任意一个点如果将它的出边割掉一条则它到达终点的最坏情况的最短距离是多少,然后我们从终点向起点反着 ...
- cakephp的优点
1.接口传参非常简单,直接域名/控制器名/方法名/param1/param2
- python3-打印一个进度条
# Auther: Aaron Fan import sys,time for i in range(30): #打印一个#号,这种方法打印不会自动换行 sys.stdout.write('#') # ...
- swing JCheckBox 更换复选框样式
Java Swing - 如何自定义JCheckBox复选标记图标 摘自 https://www.w3cschool.cn/java/codedemo-484050311.html import ja ...
- java获取Excel的导入
先准备好这2个架包 import java.io.*; import org.apache.commons.io.FileUtils; import org.apache.poi.hssf.userm ...
- [译]Javascript中的闭包(closures)
本文翻译youtube上的up主kudvenkat的javascript tutorial播放单 源地址在此: https://www.youtube.com/watch?v=PMsVM7rjupU& ...
- redis系列:哨兵
1 简介 Sentinel(哨兵)是Redis 的高可用性解决方案:通过哨兵可以创建一个当主服务器出现故障时自动将从服务器升级为主服务器的一个分布式系统.解决了主从复制出现故障时需要人为干预的问题. ...
- 具有增删改查功能的表格Demo--【BootStrap】
http://blog.csdn.net/wangmei4968/article/details/48437175
- Web Server 在iis下部署php网站在iis下
Web Server 在iis下部署php网站在iis下 一.参考地址: windows8 http://www.cnblogs.com/haocool/archive/2012/10/14/win ...
- [OpenGL]点阵显示生日快乐小程序
刚工作没多久的时候,业余学习了OGL的知识(这是写不好的借口吧), 在某个异性生日的时候写了这个程序. 编译平台: MinGW GCC gcc -o happOK happyOK.c -lglut32 ...