hdu1845(a^b的因子和%p)
题目链接:http://poj.org/problem?id=1845
思路:
1.整数唯一分解定理:
任意正整数都有且只有一种方式写出其素因子的乘积表达式。
a=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
2.约数和公式:
对于已经分解的整数a=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有a的所有因子之和为
S` = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
那么 a^b 的所有因子和为
S = (1+p1+p1^2+p1^3+...p1^(k1*b)) * (1+p2+p2^2+p2^3+….p2^(k2*b)) * (1+p3+ p3^3+…+ p3^(k3*b)) * .... * (1+pn+pn^2+pn^3+...pn^(kn*b))
对于数列 1, p, p^2, p^3 ... p^n % mod,其中 mod 为质数,打个表可以发现该数列是一个循环数列,其中存在一个循环节为 1, p, p^1, ... p^(mod-2).其实这点在费马小定理中是有体现的,a^(mod-1) = 1 (% mod).
那么对于求 cnt = 1 + p + p^2 + ... + p^n % mod,可以令
cc1 = (n + 1) / (mod - 1)
cc2 = (n + 1) % (mod - 1)
cnt1 = 1 + p + p^2 + ... + p^(mod - 2)
cnt2 = 1 + p + p^2 + ... + p^(cc2 - 1)
那么 cnt = cc1 * cnt1 + cnt2 % mod
对于求 a^b,可以先将 a 质因分解,得到 S 的表达式,对于 S 表达式,只需要按照上面的方法求出其中每个乘数项即可.时间复杂度为 O(loga * mod), 本题中 mod = 9901, 时间上是允许的.
代码:
#include <iostream>
#include <stdio.h>
#include <map>
#define ll long long
using namespace std; const int mod = ;
const int MAXN = 1e5 + ;
ll prime[MAXN], indx = ;
map<int, int> num; int get(ll a, ll b){//计算sigma(a^i),其中0<=i<=b
ll sol1 = , sol2 = -, cnt = ;
ll cc1 = (b + ) / (mod - );
ll cc2 = (b + ) % (mod - );
for(int i = ; i < mod - ; i++){
sol1 = (sol1 + cnt) % mod;
if(sol2 == - && i + == cc2) sol2 = sol1;
cnt = (cnt * a) % mod;
}
return (sol1 * cc1 % mod + sol2) % mod;
} int main(void){
ll a, b, sol = ;
cin >> a >> b;
for(int i = ; i * i <= a; i++){
if(a % i == ){
prime[indx] = i;
while(a % i == ){
num[i]++;
a /= i;
}
indx++;
}
}
if(a > ) prime[indx++] = a, num[a]++;
for(int i = ; i < indx; i++){
sol = (sol * get(prime[i], b * num[prime[i]])) % mod;
}
cout << sol << endl;
return ;
}
但是当 mod 比较大时这个方法就不行了,mod 比较大时可以用下面这个代码,贴的 Kuangbin 模板
代码:
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#define ll long long
using namespace std; //******************************************
//素数筛选和合数分解
const int MOD = ;
const int MAXN=;
int prime[MAXN+]; void getPrime(void){
memset(prime, , sizeof(prime));
for(int i = ; i <= MAXN; i++)
{
if(!prime[i]) prime[++prime[]] = i;
for(int j=; j<= prime[]&&prime[j] <= MAXN/i; j++)
{
prime[prime[j]*i] = ;
if(i % prime[j] == ) break;
}
}
} ll factor[][];
int fatCnt; int getFactors(ll x){
fatCnt = ;
ll tmp = x;
for(int i=; prime[i] <= tmp/prime[i]; i++){
factor[fatCnt][] = ;
if(tmp % prime[i] == ){
factor[fatCnt][] = prime[i];
while(tmp % prime[i] == ){
factor[fatCnt][]++;
tmp /= prime[i];
}
fatCnt++;
}
}
if(tmp!=)
{
factor[fatCnt][]=tmp;
factor[fatCnt++][]=;
}
return fatCnt;
} //******************************************
ll pow_m(ll a, ll n)//快速模幂运算
{
ll res = ;
ll tmp = a % MOD;
while(n){
if(n & ){
res *= tmp;
res%=MOD;
}
n >>= ;
tmp *= tmp;
tmp %= MOD;
}
return res;
} ll sum(ll p, ll n){//计算1+p+p^2+...+p^n
if(p == )return ;
if(n == )return ;
if(n & ){//奇数
return (( + pow_m(p, n/ + )) % MOD * sum(p, n / ) % MOD) % MOD;
}else return (( + pow_m(p, n / + )) % MOD * sum(p, n / - ) + pow_m(p, n / ) % MOD) % MOD; } int main(void){
int A, B;
getPrime();
while(scanf("%d%d", &A, &B) != EOF){
getFactors(A);
ll ans = ;
for(int i = ; i < fatCnt; i++){
ans *= (sum(factor[i][], B * factor[i][]) % MOD);
ans %= MOD;
}
printf("%lld\n",ans);
}
return ;
}
hdu1845(a^b的因子和%p)的更多相关文章
- Uva 11395 Sigma Function (因子和)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/C 题目在文末 题意:1~n (n:1~1012)中,因子 ...
- LightOj 1098 - A New Function(求1-n所有数的因子和)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1098 题意:给你一个数n (0 ≤ n ≤ 2 * 109),求n以内所有数的因子和, ...
- nylg 小M的因子和
小M的因子和 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 小M在上课时有些得意忘形,老师想出道题目难住他.小M听说是求因子和,还是非常得意,但是看完题目是求A的B ...
- 洛谷P1593 因子和
题目描述 输入两个正整数a和b,求a^b的因子和.结果太大,只要输出它对9901的余数. 输入输出格式 输入格式: 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式: a^b的因 ...
- 因子和(luoguP1593)(等比数列求和+逆元)
输入两个正整数\(a\)和\(b\),求\(a\cdot b\)的因子和.结果太大,只要输出它对9901的余数. Input 仅一行,为两个正整数\(a\)和\(b\)(\(0≤a,b≤5000000 ...
- [转]Laplace算子和Laplacian矩阵
1 Laplace算子的物理意义 Laplace算子的定义为梯度的散度. 在Cartesian坐标系下也可表示为: 或者,它是Hessian矩阵的迹: 以热传导方程为例,因为热流与温度的梯度成正比,那 ...
- 七夕节---hdu1215(打表求因子和)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1215 给你一个数n(1<=n<=50w)求n的所有因子和, 由于n的范围比较大,所以要采用 ...
- 王子和公主 UVa10635
[题目描述]:王子和公主 一个王子和公主在n*n的格子中行走,这些格子是有1....n^2的编号的.现在给定p+1个数,再给定q+1个数,公主和王子可以选择其中某些格子行走,求他们最多能走几个相同的格 ...
- hdu-1452 Happy 2004---因子和+逆元
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意: 求2004^x次方的因子和mod29的值 解题思路: 首先2004 = 2 * 2 ...
随机推荐
- html5 日常小结
HTML5新标签汇总 1. html5新的 (input type=类型) 元素 <input type="number" name="quantity" ...
- C# 获取图片某像素点RGB565值
Project Source Download: http://download.csdn.net/detail/mostone/6360007 [csharp] view plain copy pu ...
- MySQL 数据库 练习题
一.表关系 请创建如下表,并创建相关约束 二.操作表 1.自行创建测试数据 2.查询“生物”课程比“物理”课程成绩高的所有学生的学号: 3.查询平均成绩大于60分的同学的学号和平均成绩: 4.查询所有 ...
- PowerDesigner中的域(Domain)的概念及应用
一.概念 域:实际上就是一个取值范围,也可扩展为一个数据类型.域可以定义检查约束.取值范围.最大值.最小值.默认值等. 域是通过用户自定义类型实现的,定义一个域的后,可以实多个实体的属性共享,这也模型 ...
- 10-19C#基础--第四部分类型(2)重点
类型: 一.数字:Math类型 1)Math.Ceiling() ( 表示进位.));//只要小数点后有值,就向前进一位,取上限. string s = Console.ReadLine(); dou ...
- 问题:Oracle 树形遍历;结果:使用oracle进行遍历树操作
使用oracle进行遍历树操作 1:首先数据库中表必须是树形结构的 2:super_department_id 为 department_id 的父节点编号 3:以下语句的执行结果是:depart ...
- 下拉框value ,selectedIndex
- ActiveMQ (二) JMS入门
JMS入门 前提:安装好了ActiveMQ ActiveMQ安装 Demo结构: 首先pom.xml引入依赖: <dependency> <groupId>org.apach ...
- oracle语法练习汇总
全是自己一个一个敲出来的啊 啊 啊 --(1)查询20号部门的所有员工信息. --(2)查询所有工种为CLERK的员工的工号.员工名和部门名. select e.empno,e.ename,d.dna ...
- idea 修改Recent projects
idea用了一段时间了,打开的项目多了,导致Open Recent列表中的项目也非常多,在找一个项目时很不方便. 后来查询,在~/Library/Preferences/IntelliJIdea目录/ ...