题目背景

割点

题目描述

给出一个nnn个点,mmm条边的无向图,求图的割点。

输入输出格式

输入格式:

第一行输入n,mn,mn,m

下面mmm行每行输入x,yx,yx,y表示xxx到yyy有一条边

输出格式:

第一行输出割点个数

第二行按照节点编号从小到大输出节点,用空格隔开

输入输出样例

输入样例#1:
复制

6 7
1 2
1 3
1 4
2 5
3 5
4 5
5 6
输出样例#1: 复制

1
5

说明

对于全部数据,n≤20000n \le 20000n≤20000,m≤100000m \le 100000m≤100000

点的编号均大于000小于等于nnn。

tarjan图不一定联通。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x3f3f3f3f
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ struct node {
int to,nxt;
}edge[maxn<<1];
int n, m;
int idx, cnt, tot;
int head[maxn], dnf[maxn], low[maxn];
bool cut[maxn]; void addedge(int u, int v) {
edge[++cnt].to = v;
edge[cnt].nxt= head[u]; head[u] = cnt;
}
void tarjan(int u, int fa) {
dnf[u] = low[u] = ++idx;
int ch = 0;
for (int i = head[u]; i; i = edge[i].nxt) {
int to = edge[i].to;
if (!dnf[to]) {
tarjan(to, fa);
low[u] = min(low[u], low[to]);
if (low[to] >= dnf[u] && u != fa) {
cut[u] = true;
}
if (u == fa)ch++;
}
low[u] = min(low[u], dnf[to]);
}
if (ch >= 2 && u == fa)cut[u] = true;
} int main()
{
//ios::sync_with_stdio(0);
rdint(n); rdint(m);
for (int i = 0; i < m; i++) {
int a, b;
rdint(a); rdint(b);
addedge(a, b); addedge(b, a); }
for (int i = 1; i <= n; i++) {
if (dnf[i] == 0)tarjan(i, i);
}
for (int i = 1; i <= n; i++) {
if (cut[i])tot++;
}
cout << tot << endl;
for (int i = 1; i <= n; i++) {
if (cut[i])cout << i << ' ';
}
return 0;
}

【模板】割点(割顶) Tarjan的更多相关文章

  1. $割点割顶tarjan$

    原题 #include <bits/stdc++.h> using namespace std; typedef long long LL; inline LL read () { LL ...

  2. Tarjan求割点(割顶) 割边(桥)

    割点的定义: 感性理解,所谓割点就是在无向连通图中去掉这个点和所有和这个点有关的边之后,原先连通的块就会相互分离变成至少两个分离的连通块的点. 举个例子: 图中的4号点就是割点,因为去掉4号点和有关边 ...

  3. 洛谷 P3388 割点(割顶) 题解

    题面:     割点性质:     节点 u 如果是割点,当且仅当存在 u 的一个子树,子树中没有连向 u 的祖先的边(返祖边).     换句话说,如果对于一个点u,它的子节点是v,如果low[v] ...

  4. Tarjan求割点 || Luogu P3388 【模板】割点(割顶)

    题面:P3388 [模板]割点(割顶) 题解:无 代码: #include<cstdio> #include<iostream> #include<cstring> ...

  5. P3388 【模板】割点(割顶) 题解 (Tarjan)

    题目链接 P3388 [模板]割点(割顶) 解题思路 最近学的东西太杂了,多写点博客免得自己糊里糊涂的过去了. 这个题求割点,感觉这篇文章写得挺好. 割点是啥?如果去掉这个点之后连通图变成多个不连通图 ...

  6. 图论算法-Tarjan模板 【缩点;割顶;双连通分量】

    图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; ...

  7. P3388 【模板】割点(割顶)

    P3388 [模板]割点(割顶) 题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式 ...

  8. 洛谷 P3388 【模板】割点(割顶)

    题目链接 题解 今天复习了一下割点. 关于\(tarjan\)这里不多讲 \(dfn\)和\(low\)数组的定义想必大家都知道 仔细观察一下,可以发现 假设便利\(u->v\)这条边 如果 \ ...

  9. poj 1144 Network 图的割顶判断模板

    Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8797   Accepted: 4116 Descripti ...

  10. POJ 1144 Network(无向图的割顶和桥模板题)

    http://poj.org/problem?id=1144 题意: 给出图,求割点数. 思路: 关于无向图的割顶和桥,这篇博客写的挺不错,有不懂的可以去看一下http://blog.csdn.net ...

随机推荐

  1. 管理react路由的history对象的插件history的使用介绍

    本文介绍如何使用history插件管理浏览记录 history插件的使用 history这个插件可以方便管理你的浏览记录 cnpm install history --save import crea ...

  2. eclipse下搭建Drools规则引擎环境

    插件下载地址:http://download.jboss.org/drools/release/ 1.点开对应的版本文件,选择标红的两个压缩包下载,其他的如有需要也可以自行选择: 2.将下载的压缩包解 ...

  3. springmvc中针对一个controller方法配置两个url请求

    转自:https://blog.csdn.net/sun5769675/article/details/50252019

  4. 需要network lightweight filter disk 上的文件netft.sys

    小米wifi在win10下安装不成功,需要network lightweight filter disk 上的文件ntflt.sys 默认路径有问题,改成下面的路径好了! 选择下面第一个路径安装成功了 ...

  5. orancle数据库 插入数量 值大于 1000 解决方案

    存储过程:当基站ID大于1000的时候,把ID通过存储过程插入表,然后处理 不推荐这么弄,没办法,项目逼到这了,以后尽量避免这样的需求发生! CREATE OR REPLACE PROCEDURE i ...

  6. Velocity加载模版文件

    一.类路径 加载classpath目录下的vm文件,或者maven项目的resources路径下 Properties p = new Properties(); p.put("file.r ...

  7. 修改linux内核启动logo及显示位置

    转载于:http://blog.chinaunix.net/uid-28458801-id-3484269.html 在此基础上我又添加了我的一些不同的地方,仅供参考 内核版本: 2.6.35.3 l ...

  8. day70-oracle PLSQL_01基本语法

    PLSQL是一种程序,和java一样都是一种程序. sql developer是基于java的jdbc连接数据库.根据java的jdbc,只要有数据库的驱动,就可以连接这个数据库.这个工具默认不需要任 ...

  9. elasticsearch2.x ik插件

    先来一个标准分词(standard),配置如下: curl -XPUT localhost:/local -d '{ "settings" : { "analysis&q ...

  10. Ros学习——创建程序包

      1.程序包 一个程序包要想称为catkin程序包必须符合以下要求: 该程序包必须包含catkin compliant package.xml文件 这个package.xml文件提供有关程序包的元信 ...