hdu 4679 树的直径
/*
题目大意:给n个点n-1条边的树,求删除哪条边时两个树中最大的直径与边权的乘积最小。
树的直径(Diameter)是指树上的最长简单路。
直径的求法:两遍BFS (or DFS)
若删除的边不是直径上的那么花费为max_len*wi
若删除的边是直径上的那么花费为max(dp[u][2],dp[v][2])*wi
*/
#pragma comment(linker, "/STACK:16777216")
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std; const int maxn=;
int dep[maxn],ans[maxn],father[maxn],max_len;//ans下标对应边的编号
int dp[maxn][];//j=0存i节点的到子树中的最长路,j=1存次长路,j=2存直径
bool vis[maxn];//标记是否为直径上的点
inline int max(int a,int b){return a>b?a:b;}
struct node
{
int id,w,v;
node(int id=,int w=,int v=):id(id),w(w),v(v){}
};
vector<node> f[maxn]; void dfs_dep(int u,int pre)//找最长路
{
for(int i=;i<f[u].size();i++)
{
int v=f[u][i].v;
if(v==pre) continue;
dep[v]=dep[u]+;
father[v]=u;
dfs_dep(v,u);
}
return ;
} void dfs(int u,int pre)
{
dp[u][]=dp[u][]=dp[u][]=;
for(int i=;i<f[u].size();i++)
{
int v=f[u][i].v;
if(v==pre) continue;
dfs(v,u);
int temp=dp[v][]+;
if(temp>dp[u][])
{
dp[u][]=dp[u][];dp[u][]=temp;
}
else if(temp>dp[u][])
dp[u][]=temp;
dp[u][]=max(dp[u][],dp[v][]);//u在子树直径边上与不再直径边上
}
dp[u][]=max(dp[u][],dp[u][]+dp[u][]);//u在子树直径中与不再直径中
} void solve(int u,int pre)
{
for(int i=;i<f[u].size();i++)
{
int v=f[u][i].v,id=f[u][i].id,w=f[u][i].w;
if(v==pre) continue;
solve(v,u);
//在树的直径上
if(vis[u] && vis[v])
ans[id]=max(ans[id],w*dp[v][]);
else ans[id]=w*max_len;
}
} int main()
{
int t,i,n,icase=,a,b,w;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=;i<=n;i++) f[i].clear();
for(i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&w);
f[a].push_back(node(i,w,b));
f[b].push_back(node(i,w,a));
}
int st,ed=,temp;
dfs_dep(ed,-);
for(i=;i<=n;i++)
if(dep[ed]<dep[i]) ed=i;
dep[st=ed]=;
dfs_dep(st,-);
ed=st;
for(i=;i<=n;i++)
if(dep[ed]<dep[i]) ed=i;
max_len=dep[ed];
memset(vis,,sizeof(vis));
father[st]=-;temp=ed;
while(father[temp]!=-)
vis[temp]=true,temp=father[temp];
memset(ans,,sizeof(ans));
dfs(st,-);solve(st,-);
dfs(ed,-);solve(ed,-);
temp=;
for(i=;i<n;i++)
if(ans[i]<ans[temp]) temp=i;
printf("Case #%d: %d\n",++icase,temp);
}
return ;
}
hdu 4679 树的直径的更多相关文章
- hdu 3721 树的直径
思路:枚举+树的直径 #include<iostream> #include<cstring> #include<cstdio> #include<algor ...
- hdu 4514(树的直径+并查集)
湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
- Warm up HDU - 4612 树的直径
题意:给出n个点和m条边的无向图,存在重边,问加一条边以后,剩下的桥的数量最少为多少. 题解: 你把这个无向图缩点后会得到一个只由桥来连接的图(可以说这个图中的所有边都是桥,相当于一棵树),然后我们只 ...
- hdu 4607 树的直径
思路:利用dfs遍历整棵树,找出最长子树与次长子树,两者的和最大就是直径. 若k值小于直径就输出k-1,否则输出(k-d-1)*2+d; #include<iostream> #inclu ...
- Warm up HDU - 4612( 树的直径 边双连通分量)
求在图中新建一条边后 剩下的最少的桥的数量..先tarjan求桥的数量..然后缩点..以连通分量为点建图 bfs求直径 最后用桥的数量减去直径即为答案 bfs求直径 https://www.cnb ...
- hdu 4679 树状dp
思路:我们其实只需要枚举每条边,求得最小值就行了. 先dfs算出每个节点作为根时,其子树的最长路径,以及进过该节点的最长,次长,第三长路径. 然后在次dfs枚举求出切断某条边,求出这条边的两个端点为子 ...
- hdu 4679 Terrorist’s destroy 树的直径+dp
题意:给你一棵树,每条边都有值W,然后问你去掉一条边,令val = w*max(两颗新树的直径),求val最小值~ 做法,先求树的直径,然后算出直径上每个点的最长枝条长度.这样对于每一条边,假如是枝条 ...
- hdu 4607 Park Visit 求树的直径
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 题目大意:给你n个点,n-1条边,将图连成一棵生成树,问你从任意点为起点,走k(k<=n) ...
- 【HDU 4612 Warm up】BCC 树的直径
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4612 题意:一个包含n个节点m条边的无向连通图(无自环,可能有重边).求添加一条边后最少剩余的桥的数 ...
随机推荐
- 内置函数系列之 sorted排序
sorted排序函数语法: sorted(可迭代对象,key=函数(默认为None),reverse=False) 将可 迭代对象的每一个元素传进key后面的函数中,根据函数运算的结果(返回值)进行排 ...
- shell+vim——05
ln --->link 链接, 链接有两种: 软连接 ln -s 源文件 目标文件 :相当于创建了一个快捷方式,源文件损坏后这个链接也就失效了 ln -s a.text a.text.s ...
- C语言进阶——struct和union分析10
struct的小秘密: C语言中的struct可以看作变量的集合 struct的问题:空结构体占用多大内存呢? 程序实例1: #include <stdio.h> struct TS { ...
- perl语言入门总结-第3章-列表与数组
1-列表list指的是标题的有序集合, 而数组(array)则是存储列表的变量. 更精确地说,列表指的是数据,而数组指的是变量. 访问数组中的元素 ] = "yabba"; ] = ...
- 内置函数--sorted,filter,map
sorted() 排序函数. 语法: sorted(Iterable, key=None, reverse=False) Iterable: 可迭代对象; key: 排序规则(排序函数); reve ...
- java跨服务器请求url获得数据
在项目中,有时需要通过请求远程服务器上的url获取数据(前提是程序所在服务器可以和url服务器ping成功), 用java在后台发送请求时,用到了java.net.URL, java.net.URLC ...
- centos使用--vim配置和推荐插件使用
目录 1.vimrc的配置内容 2.Vundle使用 简介 安装vundle 配置vundle插件: 安装需要的插件 移除不需要的插件 其他常用命令 3 使用插件 3.1 NERDTree 3.2 e ...
- 网易考拉Android客户端网络模块设计
本文来自网易云社区 作者:王鲁才 客户端开发中不可避免的需要接触到访问网络的需求,如何把访问网络模块设计的更具有扩展性是每一个移动开发者不得不面对的事情.现在有很多主流的网络请求处理框架,如Squar ...
- jvm可视化工具jvisualvm插件——Visual GC
转自:http://blog.csdn.net/xuelinmei_happy/article/details/51090115 Visual GC是一个Java 内存使用分析与GC收集的可视化工具插 ...
- UVa 11806 - Cheerleaders (组合计数+容斥原理)
<训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...