POJ3522 Slim Span
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 7462 | Accepted: 3959 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.
Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).
Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
Source
kruskal求最小生成树,每次删掉可用边中最小的,然后再跑最小生成树……不断更新答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int INF=1e7;
const int mxn=;
int n,m;
int ans;
struct edge{
int x,y;
int v;
}e[mxn];
int cmp(const edge a,const edge b){
return a.v<b.v;
}
int fa[mxn];
void init(int x){
for(int i=;i<=x;i++)fa[i]=i;return;
}
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void Kruskal(int st){
init(n);
int i,j;
int cnt=;
for(i=st;i<=m && cnt!=n-;i++){
int x=find(e[i].x);int y=find(e[i].y);
if(x!=y){
fa[x]=y;
cnt++;
}
if(cnt==n-){
ans=min(ans,e[i].v-e[st].v);
return;
}
}
return;
}
int main(){
while(scanf("%d%d",&n,&m) && (n||m)){
ans=INF;
int i,j;
for(i=;i<=m;i++)scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].v);
sort(e+,e+m+,cmp);
for(i=;i<=m;i++)
Kruskal(i);
if(ans==INF)printf("-1\n");
else printf("%d\n",ans);
}
return ;
}
POJ3522 Slim Span的更多相关文章
- 最小生成树POJ3522 Slim Span[kruskal]
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7594 Accepted: 4029 Descrip ...
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
- Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
- 【kruscal】【最小生成树】poj3522 Slim Span
求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...
- [LA 3887] Slim Span
3887 - Slim SpanTime limit: 3.000 seconds Given an undirected weighted graph G <tex2html_verbatim ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- Slim Span(Kruskal)
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Subm ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
随机推荐
- C语言字符篇(五)内存函数
memcpy不可以把目的地址写成本身 但是memmove可以,因为它是先保存到临时空间 #include <string.h> void *memcpy(void *dest, con ...
- [Codeforces958C2]Encryption (medium)(区间DP)
Description 题目链接 Solution 显然的区间DP,正常想法f[i][j]表示前i个数分成j块,每次在i前找一个k使得balala,然而常规打法会超时 我们发现,对于i前面的所有点,他 ...
- PHP代码审计5-实战漏洞挖掘-cms后台登录绕过
cms后台登录绕过 练习源码:[来源:源码下载](数据库配置信息有误,interesting) 注:需进行安装 1.创建数据库 2.设置账号密码,连接数据库 3.1 正常登录后台,抓包分析数据提交位置 ...
- 8,实例化Flask的参数 及 对app的配置
Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? 它能给我们带来怎么样的方便呢? 首先展示一下: from ...
- 1-Linux运维人员要求
linux 运维: 1.linux基础操作命令2.linux基础服务搭建3.文本处理命令4.shell脚本编程 python perl php5.数据库 mysql oracle6.lvs集群 热备 ...
- java文件基本操作
public static void main(String [] args) { try { /* * File类 */ /*String directory = "D:/Workspac ...
- 《Cracking the Coding Interview》——第1章:数组和字符串——题目2
2014-03-18 01:30 题目:反转一个char *型的C/C++字符串. 解法:一头一尾俩iterator,向中间靠拢并且交换字符. 代码: // 1.2 Implement a funct ...
- 基于mysqldump备份集来恢复某个误操作的表(drop,truncate)
Preface How to rescue a dropped or truncated table online?Dropping or truncating is ddl oper ...
- Opencv4.0.0安装包
这个资源是Opencv4.0.0安装包,包括Windows软件包,Android软件包,IOS软件包,还有opencv的源代码:需要的下载吧. 点击下载
- Extjs msgTarget 提示位置
extjs msgTarget 有效值包括: qtip:显示一个浮动的提示消息 title:显示一个浏览器浮动提示消息 under:在字段下面显示一个提示消息,使用under时要注意表单的高度 sid ...