Union-Find 检测无向图有无环路算法
不相交集合数据结构(Disjoint-set data structure)是一种用于跟踪集合被分割成多个不相交的子集合的数据结构,每个集合通过一个代表来标识,代表即集合中的某个成员。
Union-Find 算法为该数据结构提供了两种非常有用的操作:
- Find:判断子集中是否存在特定的元素。可以用于检测是否两个元素存在于相同的子集中。
- Union:将两个不子集合并成新的子集合。
Union-Find 算法的一个具体的应用就是在无向图(Undirected Graph)中检测是否存在环路(Cycle)。
例如,下面这张无向图 G:
0
| \
| \
1-----2
G 中包含 3 个顶点和 3 条边 {{0, 1}, {1, 2}, {2, 1}}。
初始时,设 int[] parent = new int[VertexCount],默认每个顶点的子集中只有自己,设为 -1。
0 1 2
-1 -1 -1
处理边 {0, 1},Find 顶点 0 和 1 的子集,发现它们在不同的子集中,则 Union 它们,此时 1 代表了子集 {0, 1}。
0 1 2
1 -1 -1
处理边 {1, 2},Find 顶点 1 和 2 的子集,发现它们在不同的子集中,则 Union 它们,此时 2 代表了子集 {0, 1, 2}。
0 1 2
1 2 -1
处理边 {2, 1},Find 顶点 2 和 1 的子集,发现它们在相同的子集中,则图存在环。
Union-Find 算法简单实现如下,其时间复杂度为 O(n)。
using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
Graph g = new Graph();
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
//g.AddEdge(2, 1, 4);
g.AddEdge(, , );
//g.AddEdge(3, 2, 9);
g.AddEdge(, , );
//g.AddEdge(4, 3, 7);
//g.AddEdge(4, 5, 4); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
Console.WriteLine(); Console.WriteLine("Is there cycle in graph: {0}", g.HasCycle()); Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } } public IEnumerable<Edge> Edges
{
get { return _adjacentEdges.Values.SelectMany(e => e); }
} public int EdgeCount { get { return this.Edges.Count(); } } public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} private int Find(int[] parent, int i)
{
if (parent[i] == -)
return i;
return Find(parent, parent[i]);
} private void Union(int[] parent, int x, int y)
{
int xset = Find(parent, x);
int yset = Find(parent, y);
parent[xset] = yset;
} public bool HasCycle()
{
int[] parent = new int[VertexCount];
for (int i = ; i < parent.Length; i++)
{
parent[i] = -;
} // Iterate through all edges of graph, find subset of both
// vertices of every edge, if both subsets are same,
// then there is cycle in graph.
foreach (var edge in this.Edges)
{
int x = Find(parent, edge.Begin);
int y = Find(parent, edge.End); if (x == y)
{
return true;
} Union(parent, x, y);
} return false;
}
}
}
}
本篇文章《Union-Find 检测无向图有无环路算法》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。
Union-Find 检测无向图有无环路算法的更多相关文章
- CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)
CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...
- [算法]检测空间三角形相交算法(Devillers & Guigue算法)
#pragma once //GYDevillersTriangle.h /* 快速检测空间三角形相交算法的代码实现(Devillers & Guigue算法) 博客原地址:http://bl ...
- UEBA 学术界研究现状——用户行为异常检测思路:序列挖掘prefixspan,HMM,LSTM/CNN,SVM异常检测,聚类CURE算法
论文 技术分析<关于网络分层信息泄漏点快速检测仿真> "1.基于动态阈值的泄露点快速检测方法,采样Mallat算法对网络分层信息的离散采样数据进行离散小波变换;利用滑动窗口对该尺 ...
- 特征点检测学习_2(surf算法)
依旧转载自作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 特征点检测学习_2(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中 ...
- 模式匹配之surf----特征点检测学习_2(surf算法)
在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就 ...
- 图论 Make Unique:有向图和无向图的一些算法
计算机科学入门资料之一的<算法与数据结构-C语言版>,覆盖了基础算法的几乎所有分支,其中的一个典型分支为图理论. 一个简介:图论基础-图数据结构基础 一个简洁的博客:图论基础,简列一本书 ...
- 当我们谈论算法我们在谈论什么:由疫情核酸检测想到的分治算法(Divide-and-Conquer)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_159 北京的疫情一波未平一波又起,由此看来,战"疫"将是一场旷日持久的战争,绝不能掉以轻心.轻易言胜.病毒随时 ...
- 无向图的最短路径算法JAVA实现
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图. ...
- 无向图的最短路径算法JAVA实现(转)
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图. ...
随机推荐
- 【转载】兼容php5,php7的cURL文件上传示例
转载来自: http://www.huanlinna.com/2016/06/25/coding/php5-php7-upload-demo-via-curl.html https://segment ...
- 用python实现一个不排序的列表功能
#!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving with Algorithms and Da ...
- Web GIS离线解决方案
1.背景 在离线环境下(局域网中)的GIS系统中如何使用地图?这里的地图主要指的是地图底图,有了底图切片数据,我们就可以看到地图,在上面加上自己的业务数据图层,进行相关操作. 要在离线环境下看到GIS ...
- Ubuntu(Linux系统)虚拟机工具vmtools详细说明
安装虚拟机工具vmtools大概步骤如下: 个人总结步骤: 第一步:点击虚拟机软件的vm工具栏选项,选择install vmware tools(安装VMware Tools) 第二步:桌面会出现一个 ...
- UVA 11768 Lattice Point or Not(扩展欧几里德)
将直线转化为ax + by = c的形式,然后扩展欧几里得求在[x1, x2]之间的解 对直线与坐标轴平行的特判 调试了好长时间,注意: 1 正负数转化为整型的处理 2 注意判断有无解 #includ ...
- make: *** [out/host/linux-x86/obj/EXECUTABLES/aidl_intermediates/aidl] 错误 1,make: *** [out/host/linux-x86/obj/lib/libESR_Portable.so] 错误 1
错误3: g++: g++: selected multilib '32' not installed selected multilib '32' not installed make: *** [ ...
- 浩瀚科技 定制现场无线手持打印PDA手持终端扫描条码开单解决方案
PDA通过扫描商品条码移动开单,实现便携式办公,伴随式销售,是深圳市浩瀚技术有限公司的一款最新安卓微POS产品,PDA能通过WIFI无线局域网.GPRS互联网直接与主机电脑连接,让公司业务人员能随时随 ...
- sql union和union all的用法及效率
UNION指令的目的是将两个SQL语句的结果合并起来.从这个角度来看, 我们会产生这样的感觉,UNION跟JOIN似乎有些许类似,因为这两个指令都可以由多个表格中撷取资料. UNION的一个限制是两个 ...
- mysql 数据库可以非本地访问
GRANT ALL PRIVILEGES ON 数据库名.* TO root@'%' IDENTIFIED BY '密码' WITH GRANT OPTION;
- iOS how to stop a scrolling scrollView
- (void)killScroll { CGPoint offset = scrollView.contentOffset; offset.y -= 1.0; [scrollView setCont ...