先推荐一个讲网络流的博客,我的网络流知识均吸收于此   传送门

EdmondsKarp算法基本思想:从起点到终点进行bfs,只要存在路,说明存在增广路径,则取这部分路 权值最小的一部分,即为增广路径(也就是这一部分路的最大流量)。然后将这条路上的正向权值都减去min,反向权值都加上min(即,m[i][j]-min,m[j][i]+min,为什么等会再解释)。然后重复此操作,最终就得到了最大流。

先上模板(也是取自于刚才的博客,真的写的很精简很好懂)。

邻接矩阵版本。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int MAXN = ;
const int MAX_INT = (( << ) - ); int n; // 图中点的数目
int pre[MAXN]; // 从 s - t 中的一个可行流中, 节点 i 的前序节点为 Pre[i];
bool vis[MAXN]; // 标记一个点是否被访问过
int mp[MAXN][MAXN]; // 记录图信息 bool bfs(int s, int t){
queue <int> que;
memset(vis, , sizeof(vis));
memset(pre, -, sizeof(pre));
pre[s] = s;
vis[s] = true;
que.push(s);
while(!que.empty()){
int u = que.front();
que.pop();
for(int i = ; i <= n; i++){
if(mp[u][i] && !vis[i]){
pre[i] = u;
vis[i] = true;
if(i == t) return true;
que.push(i);
}
}
}
return false;
} int EK(int s, int t){
int ans = ;
while(bfs(s, t)){
int mi = MAX_INT;
for(int i = t; i != s; i = pre[i]){
mi = min(mi, mp[pre[i]][i]);
}
for(int i = t; i != s; i = pre[i]){
mp[pre[i]][i] -= mi;
mp[i][pre[i]] += mi;
}
ans += mi;
}
return ans;
}
 

这部分代码唯一不好理解的就是,思考了很久,终于在跑步时想通了这部分代码的原理。

for(int i = t; i != s; i = pre[i]){
mp[pre[i]][i] -= mi;
mp[i][pre[i]] += mi;
}

mp[pre[i]][i]-mi好理解,因为已经流过了嘛,那为什么有mp[i][pre[i]]+=mi呢?让我们看一个具体的例子。

按照我们的做法,第一次得到了1-2-4-6这条路径,会发现最大流此时是2,然后将路径上的值全部减去2,然后得到的图是这样的:

如果只减掉了正向的路径的权值,这个图就不连通了,也就是答案是2,然而其实答案是3,为什么呢,让我们加上反向的权值看一下:

红色的就是反向的权值,然后再进行上述过程,会发现还有一条 1-3-4-2-5-6的路径,权值为1,所以答案是2+1=3.(这个答案大家可以根据第一幅图自己想一下,会发现就是3,好神奇有木有?)

那为什么这么神奇呢,我的理解是,反向路径代表了,这条路曾经通了多少水,比如2-4这条就通2滴水,然后在第二条路径中通过的这1滴水,其实就是2号路径跟1号路径说,你原本在2-4这条路上有两滴水,现在分一滴到我想去的地方,然后我的水去你想去的地方,这样我们都能实现目标。(想一下是不是这么回事)。

解决了这个难题,那EK算法的模板你就理解啦!

接下来送上邻接表的版本。

const int MAXN = ;
const int MAX_INT = ( << ); struct Edge{
int v, nxt, w;
}; struct Node{
int v, id;
}; int n, m, ecnt;
bool vis[MAXN];
int head[MAXN];
Node pre[MAXN];
Edge edge[MAXN]; void init(){
ecnt = ;
memset(edge, , sizeof(edge));
memset(head, -, sizeof(head));
} void addEdge(int u, int v, int w){
edge[ecnt].v = v;
edge[ecnt].w = w;
edge[ecnt].nxt = head[u];
head[u] = ecnt++;
} bool bfs(int s, int t){
queue <int> que;
memset(vis, , sizeof(vis));
memset(pre, -, sizeof(pre));
pre[s].v = s;
vis[s] = true;
que.push(s);
while(!que.empty()){
int u = que.front();
que.pop();
for(int i = head[u]; i + ; i = edge[i].nxt){
int v = edge[i].v;
if(!vis[v] && edge[i].w){
pre[v].v = u;
pre[v].id = i;
vis[v] = true;
if(v == t) return true;
que.push(v);
}
}
}
return false;
} int EK(int s, int t){
int ans = ;
while(bfs(s, t)){
int mi = MAX_INT;
for(int i = t; i != s; i = pre[i].v){
mi = min(mi, edge[pre[i].id].w);
}
for(int i = t; i != s; i = pre[i].v){
edge[pre[i].id].w -= mi;
edge[pre[i].id ^ ].w += mi;
}
ans += mi;
}
return ans;
} // 加边
addEdge(u, v, w);
addEdge(v, u, );
// 调用
int ans = EK(s, t);

网络流EdmondsKarp算法模板理解的更多相关文章

  1. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  2. 网络流Edmonds-Karp算法入门

    今天自习课没事干,看书自学了一下网络流中的EK算法.(求最大流) 设s为源点,t为汇点,C为容量矩阵,F为流量矩阵,f为最大流量. 1.初始化F,f 2.用BFS在残量网络中找到一条从s到t的最短增广 ...

  3. 网络流EK算法模板

    \(EK\)算法的思想就是每一次找一条增广路进行增广. 注意几个点: 存图时\(head\)数组要设为\(-1\). 存图的代码是这样的: inline void add(int u, int v, ...

  4. POJ 3281 [网络流dinic算法模板]

    题意: 农场主有f种食物,d种饮料,n头牛. 接下来的n行每行第一个数代表第i头牛喜欢吃的食物数量,和第i头牛喜欢喝的饮料数目. 接下来分别是喜欢的食物和饮料的编号. 求解:农场主最多能保证几头牛同时 ...

  5. 网络流 EK算法模板。

    这篇博客讲得很好 #include<queue> #include<stdio.h> #include<string.h> using namespace std; ...

  6. 网络流Dinic算法模板 POJ1273

    这就是以后我的板子啦~~~ #include <queue> #include <cstdio> #include <cstring> #include <a ...

  7. HDU1532最大流 Edmonds-Karp,Dinic算法 模板

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  8. ACM - 图论- 网络流 - 算法模板

    \(EK\) 算法模板 #include <iostream> #include <queue> #include<string.h> using namespac ...

  9. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

随机推荐

  1. [Python Study Notes]csv文件操作

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  2. python爬虫实战(2)--爬取百度贴吧

    本篇目标 1.对百度贴吧的任意帖子进行抓取 2.指定是否只抓取楼主发帖内容 3.将抓取到的内容分析并保存到文件 1.URL格式的确定 先观察百度贴吧url格式,以中南财经政法大学迎新帖为例,URL我们 ...

  3. adb pull 和 adb push

    1. 操作单个文件 通过adb push,则可将文件添加到SD卡中.如果想在push的时候修改文件名称的话,只需要修改push的第二个参数改成完整路径(目录+文件名),如/sdcard/test-0. ...

  4. Python单例模式剖析

    在聊这之前我们首先要明确的是,单例模式在实际中的意义以及在python中具有实现的价值? 当前,相信有很多人支持单例模式,也有不少人反对,尤其是在python中,目前依旧具有很大的争议性.我们要在评论 ...

  5. Swing事件机制

    -------------siwuxie095                             Swing 是基于 MVC 结构的框架     在 Swing 中,所有的用户操作都是基于 Co ...

  6. php中定义数组的方法

    1.PHP定义数组的格式 数组名=array(); 如:$aa=array();//这样就定义了一个数组, 之后给元素赋值: $aa[0]="9016"; $aa[1]=" ...

  7. (转)C++中使用C代码

    昨晚看书的时候碰到一个问题,在C++中如何调用C代码...于是查了一下资料...发现了一个大神写的文章挺好的. -------------------------------------------- ...

  8. arp绑定

    Windows xp 在CMD中执行 arp -s ip mac 例如 arp -s 192.168.2.101 40-5f-c2-c1-97-fb Windwos 7 在 Windows 7/Vis ...

  9. int类型转换成String , 不足n位 在前面补0

    1.String.format("%02d", 5);-->结果:05 0代表前面要补的字符 2代表字符串长度 d表示参数为整数类型 2.秒转换成时分秒 private St ...

  10. 20169219《Linux内核原理与分析》第八周作业

    网易云课堂学习 task_struct数据结构 struct task_struct { volatile long state;进程状态 void *stack; 堆栈 pid_t pid; 进程标 ...