题意:给定一个数列${a_i}$,若子序列长度为$k$,最大公约数为$gcd$,定义子序列的权值为$k*\gcd (\gcd  > 1)$。求所有子序列的权值和。 答案对10^9+7取模。

解题关键:容斥原理求序列中各$gcd$的个数,亦可用莫比乌斯函数。

逆序求的话,前面直接减后面的个数,在后面一项就相当于相加了,如此往复。

关于知道所有$gcd$为$n$的个数之后答案的求法:

法一:

$\begin{array}{l}
1C_n^1 + 2C_n^2 + ... + nC_n^n\\
= n(C_{n - 1}^1 + C_{n - 1}^2 + ... + C_{n - 1}^{n - 1})\\
= n{2^{n - 1}}
\end{array}$

法二:

$\begin{array}{l}
[{(x + 1)^n}]' = n{(x + 1)^{n - 1}}\\
{(x + 1)^n} = \sum\limits_{i = 1}^n {C_n^i{x^i}} \\
n{(x + 1)^{n - 1}} = \sum\limits_{i = 1}^n {C_n^ii{x^{i - 1}}}
\end{array}$

法三:逆序相加

容斥解法:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
#define inf 0x3f3f3f3f
ll c[],pw[],sum[];
int main(){
ll n,x,mx=-inf;
cin>>n;
pw[]=;
for(int i=;i<=n+;i++) pw[i]=pw[i-]*%mod;
for(int i=;i<n;i++) cin>>x,c[x]++,mx=max(mx,x);//hash一下
ll ct;
ll ans=;
for(int i=mx;i>;i--){
ct=;
for(int j=i;j<=mx;j+=i){
ct=(ct+c[j])%mod;
sum[i]-=sum[j];
}
sum[i]=(sum[i]+ct*pw[ct-]%mod+mod)%mod;
ans=(ans+sum[i]*i%mod+mod)%mod;
}
cout<<ans<<"\n";
return ;
}

莫比乌斯反演解法:

 #include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll mu[],c[],cnt[],pw[],g[];
void sievemu(int n){
mu[]=;
for(int i=;i<=n;i++){
for(int j=i+i;j<=n;j+=i){
mu[j]-=mu[i];
}
}
} int main(){
sievemu();
ll n,x,mx=-inf;
cin>>n;
pw[]=;
for(int i=;i<=n;i++) pw[i]=pw[i-]*%mod;
for(int i=;i<n;i++) cin>>x,c[x]++,mx=max(mx,x);
for(int i=;i<=mx;i++){
ll ss=;
for(int j=i;j<=mx;j+=i){
ss+=c[j];
}
if(ss) cnt[i]=ss*pw[ss-]%mod;
}
//计算gcd倍数的个数 //对答案进行莫比乌斯反演
ll ans=;
for(int i=;i<=mx;i++){
for(int j=i;j<=mx;j+=i){
g[i]=(g[i]+cnt[j]*mu[j/i]%mod+mod)%mod;
}
ans=(ans+i*g[i]%mod+mod)%mod;
}
cout<<ans<<"\n";
return ;
}

[cf839d]Winter is here容斥原理的更多相关文章

  1. CF839D Winter is here

    题目分析 显然我们不可能直接计算每一个子序列的贡献,而应该计算对于每一个gcd对答案的贡献. 考虑容斥.按照套路: 设\(q(i)\)表示序列\(gcd\)为\(i\)的倍数的序列长度和. 设\(g( ...

  2. Codeforces 839D Winter is here - 暴力 - 容斥原理

    Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n s ...

  3. Codeforces 839D Winter is here【数学:容斥原理】

    D. Winter is here time limit per test:3 seconds memory limit per test:256 megabytes input:standard i ...

  4. Codeforces 839D Winter is here(容斥原理)

    [题目链接] http://codeforces.com/contest/839/problem/D [题目大意] 给出一些数,求取出一些数,当他们的GCD大于0时,将数量乘GCD累加到答案上, 求累 ...

  5. 【容斥原理】Codeforces Round #428 (Div. 2) D. Winter is here

    给你一个序列,让你对于所有gcd不为1的子序列,计算它们的gcd*其元素个数之和. 设sum(i)为i的倍数的数的个数,可以通过容斥算出来. 具体看这个吧:http://blog.csdn.net/j ...

  6. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  7. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  8. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  9. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. 【leetcode刷题笔记】Binary Tree Preorder Traversal

    Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...

  2. Python 3 并发编程多进程之进程与线程

    Python 3 进程与线程 进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的 ...

  3. android6.0 外部存储设备插拔广播以及获取路径(U盘)【转】

    本文转载自:https://blog.csdn.net/zhouchengxi/article/details/53982222 这里我将U盘作为例子来说明解析. android4.1版本时U盘插拔时 ...

  4. NetBeans字体设置

    01.找到自己java字体目录.我的目录是[C:\Program Files\Java\jdk1.7.0_21\jre\lib] 02.复制fontconfig.properties.src, 重命名 ...

  5. VNC服务安装、配置与使用

    原帖地址: http://blog.itpub.net/519536/viewspace-607549/ 该文档配置环境是RHEL,不同系统可能会有差别,本人测试过centos,ubuntu 1.确认 ...

  6. C#实现网站登录

    public class HTMLHelper    {        /// <summary>           /// 获取CooKie          /// /// < ...

  7. Native App vs Web App 以及 Hybrid App的实现原理

    移动应用基本的三种类型 1)  Native 应用程序 2)  Web 应用程序 3)  混合应用程序(Hybrid: Native应用和web应用结合) Native 应用 直接运行在电脑上或者智能 ...

  8. MYSQL中获取得最后一条记录的语句

    方法1:select max(id) from tablename 方法2:select last_insert_id(); 在MySQL中,使用auto_increment类型的id字段作为表的主键 ...

  9. linux命令学习笔记(4):mkdir命令

    linux mkdir 命令用来创建指定的名称的目录,要求创建目录的用户在当前目录中具有写权限, 并且指定的目录名不能是当前目录中已有的目录. .命令格式: mkdir [选项] 目录... .命令功 ...

  10. inux命令学习笔记(13):less 命令

    less 工具也是对文件或其它输出进行分页显示的工具,应该说是linux正统查看文件内容的工具,功能极其强大. less 的用法比起 more 更加的有弹性.在 more 的时候,我们并没有办法向前面 ...