1:照常先来几张图 看效果
2:首先 看官方文档 我把echart官方的例子给扒下来并整理了得出如下效果
上 案例图和代码
效果图 :
代码:
<style type="text/css">
#c_chart {
width: 100%;
height: 600px;
}
</style>
<!-- ECharts单文件引入 -->
<script type="text/javascript">
var dataMap = {};
function dataFormatter(obj) {
var pList = ['北京', '天津', '河北', '山西', '内蒙古', '辽宁', '吉林', '黑龙江', '上海', '江苏', '浙江', '安徽', '福建', '江西', '山东', '河南', '湖北', '湖南', '广东', '广西', '海南', '重庆', '四川', '贵州', '云南', '西藏', '陕西', '甘肃', '青海', '宁夏', '新疆'];
// AreaList
var temp;
var max = 0;
for (var year = 2002; year <= 2011; year++) {
temp = obj[year];
for (var i = 0, l = temp.length; i < l; i++) {
max = Math.max(max, temp[i]);
obj[year][i] = {
name: pList[i],
value: temp[i]
}
}
obj[year + 'max'] = Math.floor(max / 100) * 100;
}
return obj;
}
function dataMix(list) {
var mixData = {};
for (var i = 0, l = list.length; i < l; i++) {
for (var key in list[i]) {
if (list[i][key] instanceof Array) {
mixData[key] = mixData[key] || [];
for (var j = 0, k = list[i][key].length; j < k; j++) {
mixData[key][j] = mixData[key][j]
|| { name: list[i][key][j].name, value: [] };
mixData[key][j].value.push(list[i][key][j].value);
}
}
}
}
return mixData;
}
dataMap.dataGDP = dataFormatter({
//max : 60000,
2011: [16251.93, 11307.28, 24515.76, 11237.55, 14359.88, 22226.7, 10568.83, 12582, 19195.69, 49110.27, 32318.85, 15300.65, 17560.18, 11702.82, 45361.85, 26931.03, 19632.26, 19669.56, 53210.28, 11720.87, 2522.66, 10011.37, 21026.68, 5701.84, 8893.12, 605.83, 12512.3, 5020.37, 1670.44, 2102.21, 6610.05],
2010: [14113.58, 9224.46, 20394.26, 9200.86, 11672, 18457.27, 8667.58, 10368.6, 17165.98, 41425.48, 27722.31, 12359.33, 14737.12, 9451.26, 39169.92, 23092.36, 15967.61, 16037.96, 46013.06, 9569.85, 2064.5, 7925.58, 17185.48, 4602.16, 7224.18, 507.46, 10123.48, 4120.75, 1350.43, 1689.65, 5437.47],
2009: [12153.03, 7521.85, 17235.48, 7358.31, 9740.25, 15212.49, 7278.75, 8587, 15046.45, 34457.3, 22990.35, 10062.82, 12236.53, 7655.18, 33896.65, 19480.46, 12961.1, 13059.69, 39482.56, 7759.16, 1654.21, 6530.01, 14151.28, 3912.68, 6169.75, 441.36, 8169.8, 3387.56, 1081.27, 1353.31, 4277.05],
2008: [11115, 6719.01, 16011.97, 7315.4, 8496.2, 13668.58, 6426.1, 8314.37, 14069.87, 30981.98, 21462.69, 8851.66, 10823.01, 6971.05, 30933.28, 18018.53, 11328.92, 11555, 36796.71, 7021, 1503.06, 5793.66, 12601.23, 3561.56, 5692.12, 394.85, 7314.58, 3166.82, 1018.62, 1203.92, 4183.21],
2007: [9846.81, 5252.76, 13607.32, 6024.45, 6423.18, 11164.3, 5284.69, 7104, 12494.01, 26018.48, 18753.73, 7360.92, 9248.53, 5800.25, 25776.91, 15012.46, 9333.4, 9439.6, 31777.01, 5823.41, 1254.17, 4676.13, 10562.39, 2884.11, 4772.52, 341.43, 5757.29, 2703.98, 797.35, 919.11, 3523.16],
2006: [8117.78, 4462.74, 11467.6, 4878.61, 4944.25, 9304.52, 4275.12, 6211.8, 10572.24, 21742.05, 15718.47, 6112.5, 7583.85, 4820.53, 21900.19, 12362.79, 7617.47, 7688.67, 26587.76, 4746.16, 1065.67, 3907.23, 8690.24, 2338.98, 3988.14, 290.76, 4743.61, 2277.35, 648.5, 725.9, 3045.26],
2005: [6969.52, 3905.64, 10012.11, 4230.53, 3905.03, 8047.26, 3620.27, 5513.7, 9247.66, 18598.69, 13417.68, 5350.17, 6554.69, 4056.76, 18366.87, 10587.42, 6590.19, 6596.1, 22557.37, 3984.1, 918.75, 3467.72, 7385.1, 2005.42, 3462.73, 248.8, 3933.72, 1933.98, 543.32, 612.61, 2604.19],
2004: [6033.21, 3110.97, 8477.63, 3571.37, 3041.07, 6672, 3122.01, 4750.6, 8072.83, 15003.6, 11648.7, 4759.3, 5763.35, 3456.7, 15021.84, 8553.79, 5633.24, 5641.94, 18864.62, 3433.5, 819.66, 3034.58, 6379.63, 1677.8, 3081.91, 220.34, 3175.58, 1688.49, 466.1, 537.11, 2209.09],
2003: [5007.21, 2578.03, 6921.29, 2855.23, 2388.38, 6002.54, 2662.08, 4057.4, 6694.23, 12442.87, 9705.02, 3923.11, 4983.67, 2807.41, 12078.15, 6867.7, 4757.45, 4659.99, 15844.64, 2821.11, 713.96, 2555.72, 5333.09, 1426.34, 2556.02, 185.09, 2587.72, 1399.83, 390.2, 445.36, 1886.35],
2002: [4315, 2150.76, 6018.28, 2324.8, 1940.94, 5458.22, 2348.54, 3637.2, 5741.03, 10606.85, 8003.67, 3519.72, 4467.55, 2450.48, 10275.5, 6035.48, 4212.82, 4151.54, 13502.42, 2523.73, 642.73, 2232.86, 4725.01, 1243.43, 2312.82, 162.04, 2253.39, 1232.03, 340.65, 377.16, 1612.6]
});
dataMap.dataPI = dataFormatter({
//max : 4000,
2011: [136.27, 159.72, 2905.73, 641.42, 1306.3, 1915.57, 1277.44, 1701.5, 124.94, 3064.78, 1583.04, 2015.31, 1612.24, 1391.07, 3973.85, 3512.24, 2569.3, 2768.03, 2665.2, 2047.23, 659.23, 844.52, 2983.51, 726.22, 1411.01, 74.47, 1220.9, 678.75, 155.08, 184.14, 1139.03],
2010: [124.36, 145.58, 2562.81, 554.48, 1095.28, 1631.08, 1050.15, 1302.9, 114.15, 2540.1, 1360.56, 1729.02, 1363.67, 1206.98, 3588.28, 3258.09, 2147, 2325.5, 2286.98, 1675.06, 539.83, 685.38, 2482.89, 625.03, 1108.38, 68.72, 988.45, 599.28, 134.92, 159.29, 1078.63],
2009: [118.29, 128.85, 2207.34, 477.59, 929.6, 1414.9, 980.57, 1154.33, 113.82, 2261.86, 1163.08, 1495.45, 1182.74, 1098.66, 3226.64, 2769.05, 1795.9, 1969.69, 2010.27, 1458.49, 462.19, 606.8, 2240.61, 550.27, 1067.6, 63.88, 789.64, 497.05, 107.4, 127.25, 759.74],
2008: [112.83, 122.58, 2034.59, 313.58, 907.95, 1302.02, 916.72, 1088.94, 111.8, 2100.11, 1095.96, 1418.09, 1158.17, 1060.38, 3002.65, 2658.78, 1780, 1892.4, 1973.05, 1453.75, 436.04, 575.4, 2216.15, 539.19, 1020.56, 60.62, 753.72, 462.27, 105.57, 118.94, 691.07],
2007: [101.26, 110.19, 1804.72, 311.97, 762.1, 1133.42, 783.8, 915.38, 101.84, 1816.31, 986.02, 1200.18, 1002.11, 905.77, 2509.14, 2217.66, 1378, 1626.48, 1695.57, 1241.35, 361.07, 482.39, 2032, 446.38, 837.35, 54.89, 592.63, 387.55, 83.41, 97.89, 628.72],
2006: [88.8, 103.35, 1461.81, 276.77, 634.94, 939.43, 672.76, 750.14, 93.81, 1545.05, 925.1, 1011.03, 865.98, 786.14, 2138.9, 1916.74, 1140.41, 1272.2, 1532.17, 1032.47, 323.48, 386.38, 1595.48, 382.06, 724.4, 50.9, 484.81, 334, 67.55, 79.54, 527.8],
2005: [88.68, 112.38, 1400, 262.42, 589.56, 882.41, 625.61, 684.6, 90.26, 1461.51, 892.83, 966.5, 827.36, 727.37, 1963.51, 1892.01, 1082.13, 1100.65, 1428.27, 912.5, 300.75, 463.4, 1481.14, 368.94, 661.69, 48.04, 435.77, 308.06, 65.34, 72.07, 509.99],
2004: [87.36, 105.28, 1370.43, 276.3, 522.8, 798.43, 568.69, 605.79, 83.45, 1367.58, 814.1, 950.5, 786.84, 664.5, 1778.45, 1649.29, 1020.09, 1022.45, 1248.59, 817.88, 278.76, 428.05, 1379.93, 334.5, 607.75, 44.3, 387.88, 286.78, 60.7, 65.33, 461.26],
2003: [84.11, 89.91, 1064.05, 215.19, 420.1, 615.8, 488.23, 504.8, 81.02, 1162.45, 717.85, 749.4, 692.94, 560, 1480.67, 1198.7, 798.35, 886.47, 1072.91, 658.78, 244.29, 339.06, 1128.61, 298.69, 494.6, 40.7, 302.66, 237.91, 48.47, 55.63, 412.9],
2002: [82.44, 84.21, 956.84, 197.8, 374.69, 590.2, 446.17, 474.2, 79.68, 1110.44, 685.2, 783.66, 664.78, 535.98, 1390, 1288.36, 707, 847.25, 1015.08, 601.99, 222.89, 317.87, 1047.95, 281.1, 463.44, 39.75, 282.21, 215.51, 47.31, 52.95, 305]
});
dataMap.dataSI = dataFormatter({
//max : 26600,
2011: [3752.48, 5928.32, 13126.86, 6635.26, 8037.69, 12152.15, 5611.48, 5962.41, 7927.89, 25203.28, 16555.58, 8309.38, 9069.2, 6390.55, 24017.11, 15427.08, 9815.94, 9361.99, 26447.38, 5675.32, 714.5, 5543.04, 11029.13, 2194.33, 3780.32, 208.79, 6935.59, 2377.83, 975.18, 1056.15, 3225.9],
2010: [3388.38, 4840.23, 10707.68, 5234, 6367.69, 9976.82, 4506.31, 5025.15, 7218.32, 21753.93, 14297.93, 6436.62, 7522.83, 5122.88, 21238.49, 13226.38, 7767.24, 7343.19, 23014.53, 4511.68, 571, 4359.12, 8672.18, 1800.06, 3223.49, 163.92, 5446.1, 1984.97, 744.63, 827.91, 2592.15],
2009: [2855.55, 3987.84, 8959.83, 3993.8, 5114, 7906.34, 3541.92, 4060.72, 6001.78, 18566.37, 11908.49, 4905.22, 6005.3, 3919.45, 18901.83, 11010.5, 6038.08, 5687.19, 19419.7, 3381.54, 443.43, 3448.77, 6711.87, 1476.62, 2582.53, 136.63, 4236.42, 1527.24, 575.33, 662.32, 1929.59],
2008: [2626.41, 3709.78, 8701.34, 4242.36, 4376.19, 7158.84, 3097.12, 4319.75, 6085.84, 16993.34, 11567.42, 4198.93, 5318.44, 3554.81, 17571.98, 10259.99, 5082.07, 5028.93, 18502.2, 3037.74, 423.55, 3057.78, 5823.39, 1370.03, 2452.75, 115.56, 3861.12, 1470.34, 557.12, 609.98, 2070.76],
2007: [2509.4, 2892.53, 7201.88, 3454.49, 3193.67, 5544.14, 2475.45, 3695.58, 5571.06, 14471.26, 10154.25, 3370.96, 4476.42, 2975.53, 14647.53, 8282.83, 4143.06, 3977.72, 16004.61, 2425.29, 364.26, 2368.53, 4648.79, 1124.79, 2038.39, 98.48, 2986.46, 1279.32, 419.03, 455.04, 1647.55],
2006: [2191.43, 2457.08, 6110.43, 2755.66, 2374.96, 4566.83, 1915.29, 3365.31, 4969.95, 12282.89, 8511.51, 2711.18, 3695.04, 2419.74, 12574.03, 6724.61, 3365.08, 3187.05, 13469.77, 1878.56, 308.62, 1871.65, 3775.14, 967.54, 1705.83, 80.1, 2452.44, 1043.19, 331.91, 351.58, 1459.3],
2005: [2026.51, 2135.07, 5271.57, 2357.04, 1773.21, 3869.4, 1580.83, 2971.68, 4381.2, 10524.96, 7164.75, 2245.9, 3175.92, 1917.47, 10478.62, 5514.14, 2852.12, 2612.57, 11356.6, 1510.68, 240.83, 1564, 3067.23, 821.16, 1426.42, 63.52, 1951.36, 838.56, 264.61, 281.05, 1164.79],
2004: [1853.58, 1685.93, 4301.73, 1919.4, 1248.27, 3061.62, 1329.68, 2487.04, 3892.12, 8437.99, 6250.38, 1844.9, 2770.49, 1566.4, 8478.69, 4182.1, 2320.6, 2190.54, 9280.73, 1253.7, 205.6, 1376.91, 2489.4, 681.5, 1281.63, 52.74, 1553.1, 713.3, 211.7, 244.05, 914.47],
2003: [1487.15, 1337.31, 3417.56, 1463.38, 967.49, 2898.89, 1098.37, 2084.7, 3209.02, 6787.11, 5096.38, 1535.29, 2340.82, 1204.33, 6485.05, 3310.14, 1956.02, 1777.74, 7592.78, 984.08, 175.82, 1135.31, 2014.8, 569.37, 1047.66, 47.64, 1221.17, 572.02, 171.92, 194.27, 719.54],
2002: [1249.99, 1069.08, 2911.69, 1134.31, 754.78, 2609.85, 943.49, 1843.6, 2622.45, 5604.49, 4090.48, 1337.04, 2036.97, 941.77, 5184.98, 2768.75, 1709.89, 1523.5, 6143.4, 846.89, 148.88, 958.87, 1733.38, 481.96, 934.88, 32.72, 1007.56, 501.69, 144.51, 153.06, 603.15]
});
dataMap.dataTI = dataFormatter({
//max : 25000,
2011: [12363.18, 5219.24, 8483.17, 3960.87, 5015.89, 8158.98, 3679.91, 4918.09, 11142.86, 20842.21, 14180.23, 4975.96, 6878.74, 3921.2, 17370.89, 7991.72, 7247.02, 7539.54, 24097.7, 3998.33, 1148.93, 3623.81, 7014.04, 2781.29, 3701.79, 322.57, 4355.81, 1963.79, 540.18, 861.92, 2245.12],
2010: [10600.84, 4238.65, 7123.77, 3412.38, 4209.03, 6849.37, 3111.12, 4040.55, 9833.51, 17131.45, 12063.82, 4193.69, 5850.62, 3121.4, 14343.14, 6607.89, 6053.37, 6369.27, 20711.55, 3383.11, 953.67, 2881.08, 6030.41, 2177.07, 2892.31, 274.82, 3688.93, 1536.5, 470.88, 702.45, 1766.69],
2009: [9179.19, 3405.16, 6068.31, 2886.92, 3696.65, 5891.25, 2756.26, 3371.95, 8930.85, 13629.07, 9918.78, 3662.15, 5048.49, 2637.07, 11768.18, 5700.91, 5127.12, 5402.81, 18052.59, 2919.13, 748.59, 2474.44, 5198.8, 1885.79, 2519.62, 240.85, 3143.74, 1363.27, 398.54, 563.74, 1587.72],
2008: [8375.76, 2886.65, 5276.04, 2759.46, 3212.06, 5207.72, 2412.26, 2905.68, 7872.23, 11888.53, 8799.31, 3234.64, 4346.4, 2355.86, 10358.64, 5099.76, 4466.85, 4633.67, 16321.46, 2529.51, 643.47, 2160.48, 4561.69, 1652.34, 2218.81, 218.67, 2699.74, 1234.21, 355.93, 475, 1421.38],
2007: [7236.15, 2250.04, 4600.72, 2257.99, 2467.41, 4486.74, 2025.44, 2493.04, 6821.11, 9730.91, 7613.46, 2789.78, 3770, 1918.95, 8620.24, 4511.97, 3812.34, 3835.4, 14076.83, 2156.76, 528.84, 1825.21, 3881.6, 1312.94, 1896.78, 188.06, 2178.2, 1037.11, 294.91, 366.18, 1246.89],
2006: [5837.55, 1902.31, 3895.36, 1846.18, 1934.35, 3798.26, 1687.07, 2096.35, 5508.48, 7914.11, 6281.86, 2390.29, 3022.83, 1614.65, 7187.26, 3721.44, 3111.98, 3229.42, 11585.82, 1835.12, 433.57, 1649.2, 3319.62, 989.38, 1557.91, 159.76, 1806.36, 900.16, 249.04, 294.78, 1058.16],
2005: [4854.33, 1658.19, 3340.54, 1611.07, 1542.26, 3295.45, 1413.83, 1857.42, 4776.2, 6612.22, 5360.1, 2137.77, 2551.41, 1411.92, 5924.74, 3181.27, 2655.94, 2882.88, 9772.5, 1560.92, 377.17, 1440.32, 2836.73, 815.32, 1374.62, 137.24, 1546.59, 787.36, 213.37, 259.49, 929.41],
2004: [4092.27, 1319.76, 2805.47, 1375.67, 1270, 2811.95, 1223.64, 1657.77, 4097.26, 5198.03, 4584.22, 1963.9, 2206.02, 1225.8, 4764.7, 2722.4, 2292.55, 2428.95, 8335.3, 1361.92, 335.3, 1229.62, 2510.3, 661.8, 1192.53, 123.3, 1234.6, 688.41, 193.7, 227.73, 833.36],
2003: [3435.95, 1150.81, 2439.68, 1176.65, 1000.79, 2487.85, 1075.48, 1467.9, 3404.19, 4493.31, 3890.79, 1638.42, 1949.91, 1043.08, 4112.43, 2358.86, 2003.08, 1995.78, 7178.94, 1178.25, 293.85, 1081.35, 2189.68, 558.28, 1013.76, 96.76, 1063.89, 589.91, 169.81, 195.46, 753.91],
2002: [2982.57, 997.47, 2149.75, 992.69, 811.47, 2258.17, 958.88, 1319.4, 3038.9, 3891.92, 3227.99, 1399.02, 1765.8, 972.73, 3700.52, 1978.37, 1795.93, 1780.79, 6343.94, 1074.85, 270.96, 956.12, 1943.68, 480.37, 914.5, 89.56, 963.62, 514.83, 148.83, 171.14, 704.5]
});
dataMap.dataEstate = dataFormatter({
//max : 3600,
2011: [1074.93, 411.46, 918.02, 224.91, 384.76, 876.12, 238.61, 492.1, 1019.68, 2747.89, 1677.13, 634.92, 911.16, 402.51, 1838.14, 987, 634.67, 518.04, 3321.31, 465.68, 208.71, 396.28, 620.62, 160.3, 222.31, 17.44, 398.03, 134.25, 29.05, 79.01, 176.22],
2010: [1006.52, 377.59, 697.79, 192, 309.25, 733.37, 212.32, 391.89, 1002.5, 2600.95, 1618.17, 532.17, 679.03, 340.56, 1622.15, 773.23, 564.41, 464.21, 2813.95, 405.79, 188.33, 266.38, 558.56, 139.64, 223.45, 14.54, 315.95, 110.02, 25.41, 60.53, 143.44],
2009: [1062.47, 308.73, 612.4, 173.31, 286.65, 605.27, 200.14, 301.18, 1237.56, 2025.39, 1316.84, 497.94, 656.61, 305.9, 1329.59, 622.98, 546.11, 400.11, 2470.63, 348.98, 121.76, 229.09, 548.14, 136.15, 205.14, 13.28, 239.92, 101.37, 23.05, 47.56, 115.23],
2008: [844.59, 227.88, 513.81, 166.04, 273.3, 500.81, 182.7, 244.47, 939.34, 1626.13, 1052.03, 431.27, 506.98, 281.96, 1104.95, 512.42, 526.88, 340.07, 2057.45, 282.96, 95.6, 191.21, 453.63, 104.81, 195.48, 15.08, 193.27, 93.8, 19.96, 38.85, 89.79],
2007: [821.5, 183.44, 467.97, 134.12, 191.01, 410.43, 153.03, 225.81, 958.06, 1365.71, 981.42, 366.57, 511.5, 225.96, 953.69, 447.44, 409.65, 301.8, 2029.77, 239.45, 67.19, 196.06, 376.84, 93.19, 193.59, 13.24, 153.98, 83.52, 16.98, 29.49, 91.28],
2006: [658.3, 156.64, 397.14, 117.01, 136.5, 318.54, 131.01, 194.7, 773.61, 1017.91, 794.41, 281.98, 435.22, 184.67, 786.51, 348.7, 294.73, 254.81, 1722.07, 192.2, 44.45, 158.2, 336.2, 80.24, 165.92, 11.92, 125.2, 73.21, 15.17, 25.53, 68.9],
2005: [493.73, 122.67, 330.87, 106, 98.75, 256.77, 112.29, 163.34, 715.97, 799.73, 688.86, 231.66, 331.8, 171.88, 664.9, 298.19, 217.17, 215.63, 1430.37, 165.05, 38.2, 143.88, 286.23, 76.38, 148.69, 10.02, 108.62, 63.78, 14.1, 22.97, 55.79],
2004: [436.11, 106.14, 231.08, 95.1, 73.81, 203.1, 97.93, 137.74, 666.3, 534.17, 587.83, 188.28, 248.44, 167.2, 473.27, 236.44, 204.8, 191.5, 1103.75, 122.52, 30.64, 129.12, 264.3, 68.3, 116.54, 5.8, 95.9, 56.84, 13, 20.78, 53.55],
2003: [341.88, 92.31, 185.19, 78.73, 61.05, 188.49, 91.99, 127.2, 487.82, 447.47, 473.16, 162.63, 215.84, 138.02, 418.21, 217.58, 176.8, 186.49, 955.66, 100.93, 25.14, 113.69, 231.72, 59.86, 103.79, 4.35, 83.9, 48.09, 11.41, 16.85, 47.84],
2002: [298.02, 73.04, 140.89, 65.83, 51.48, 130.94, 76.11, 118.7, 384.86, 371.09, 360.63, 139.18, 188.09, 125.27, 371.13, 199.31, 145.17, 165.29, 808.16, 82.83, 21.45, 90.48, 210.82, 53.49, 95.68, 3.42, 77.68, 41.52, 9.74, 13.46, 43.04]
});
dataMap.dataFinancial = dataFormatter({
//max : 3200,
2011: [2215.41, 756.5, 746.01, 519.32, 447.46, 755.57, 207.65, 370.78, 2277.4, 2600.11, 2730.29, 503.85, 862.41, 357.44, 1640.41, 868.2, 674.57, 501.09, 2916.13, 445.37, 105.24, 704.66, 868.15, 297.27, 456.23, 31.7, 432.11, 145.05, 62.56, 134.18, 288.77],
2010: [1863.61, 572.99, 615.42, 448.3, 346.44, 639.27, 190.12, 304.59, 1950.96, 2105.92, 2326.58, 396.17, 767.58, 241.49, 1361.45, 697.68, 561.27, 463.16, 2658.76, 384.53, 78.12, 496.56, 654.7, 231.51, 375.08, 27.08, 384.75, 100.54, 54.53, 97.87, 225.2],
2009: [1603.63, 461.2, 525.67, 361.64, 291.1, 560.2, 180.83, 227.54, 1804.28, 1596.98, 1899.33, 359.6, 612.2, 165.1, 1044.9, 499.92, 479.11, 402.57, 2283.29, 336.82, 65.73, 389.97, 524.63, 194.44, 351.74, 23.17, 336.21, 88.27, 45.63, 75.54, 198.87],
2008: [1519.19, 368.1, 420.74, 290.91, 219.09, 455.07, 147.24, 177.43, 1414.21, 1298.48, 1653.45, 313.81, 497.65, 130.57, 880.28, 413.83, 393.05, 334.32, 1972.4, 249.01, 47.33, 303.01, 411.14, 151.55, 277.66, 22.42, 287.16, 72.49, 36.54, 64.8, 171.97],
2007: [1302.77, 288.17, 347.65, 218.73, 148.3, 386.34, 126.03, 155.48, 1209.08, 1054.25, 1251.43, 223.85, 385.84, 101.34, 734.9, 302.31, 337.27, 260.14, 1705.08, 190.73, 34.43, 247.46, 359.11, 122.25, 168.55, 11.51, 231.03, 61.6, 27.67, 51.05, 149.22],
2006: [982.37, 186.87, 284.04, 169.63, 108.21, 303.41, 100.75, 74.17, 825.2, 653.25, 906.37, 166.01, 243.9, 79.75, 524.94, 219.72, 174.99, 204.72, 899.91, 129.14, 16.37, 213.7, 299.5, 89.43, 143.62, 6.44, 152.25, 50.51, 23.69, 36.99, 99.25],
2005: [840.2, 147.4, 213.47, 135.07, 72.52, 232.85, 83.63, 35.03, 675.12, 492.4, 686.32, 127.05, 186.12, 69.55, 448.36, 181.74, 127.32, 162.37, 661.81, 91.93, 13.16, 185.18, 262.26, 73.67, 130.5, 7.57, 127.58, 44.73, 20.36, 32.25, 80.34],
2004: [713.79, 136.97, 209.1, 110.29, 55.89, 188.04, 77.17, 32.2, 612.45, 440.5, 523.49, 94.1, 171, 65.1, 343.37, 170.82, 118.85, 118.64, 602.68, 74, 11.56, 162.38, 236.5, 60.3, 118.4, 5.4, 90.1, 42.99, 19, 27.92, 70.3],
2003: [635.56, 112.79, 199.87, 118.48, 55.89, 145.38, 73.15, 32.2, 517.97, 392.11, 451.54, 87.45, 150.09, 64.31, 329.71, 165.11, 107.31, 99.35, 534.28, 61.59, 10.68, 147.04, 206.24, 48.01, 105.48, 4.74, 77.87, 42.31, 17.98, 24.8, 64.92],
2002: [561.91, 76.86, 179.6, 124.1, 48.39, 137.18, 75.45, 31.6, 485.25, 368.86, 347.53, 81.85, 138.28, 76.51, 310.07, 158.77, 96.95, 92.43, 454.65, 35.86, 10.08, 134.52, 183.13, 41.45, 102.39, 2.81, 67.3, 42.08, 16.75, 21.45, 52.18]
});
dataMap.dataGDP_Estate = dataMix([dataMap.dataEstate, dataMap.dataGDP]);
// 路径配置
require.config({
paths: {
echarts: 'http://echarts.baidu.com/build/dist'
}
});
// 使用
require(
[
'echarts',
'echarts/chart/bar', // 使用柱状图就加载bar模块,按需加载
'echarts/chart/line'
],
function (ec) {
// 基于准备好的dom,初始化echarts图表
var myChart = ec.init(document.getElementById('c_chart'));
var option = {
timeline: {
data: [
'2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01', '2006-01-01',
'2007-01-01', '2008-01-01', '2009-01-01', '2010-01-01', '2011-01-01'
],
label: {
formatter: function (s) {
return s.slice(0, 4);
}
},
autoPlay: true,
playInterval: 1000
},
options: [
{
title: {
'text': '2002全国宏观经济指标',
'subtext': '数据来自国家统计局'
},
tooltip: { 'trigger': 'axis' },
legend: {
x: 'right',
'data': ['GDP', '金融', '房地产', '第一产业', '第二产业', '第三产业'],
'selected': {
'GDP': true,
'金融': false,
'房地产': true,
'第一产业': false,
'第二产业': false,
'第三产业': false
}
},
toolbox: {
'show': true,
orient: 'vertical',
x: 'right',
y: 'center',
'feature': {
'mark': { 'show': true },
'dataView': { 'show': true, 'readOnly': false },
'magicType': { 'show': true, 'type': ['line', 'bar', 'stack', 'tiled'] },
'restore': { 'show': true },
'saveAsImage': { 'show': true }
}
},
calculable: true,
grid: { 'y': 80, 'y2': 100 },
xAxis: [{
'type': 'category',
'axisLabel': { 'interval': 0 },
'data': [
'北京', '\n天津', '河北', '\n山西', '内蒙古', '\n辽宁', '吉林', '\n黑龙江',
'上海', '\n江苏', '浙江', '\n安徽', '福建', '\n江西', '山东', '\n河南',
'湖北', '\n湖南', '广东', '\n广西', '海南', '\n重庆', '四川', '\n贵州',
'云南', '\n西藏', '陕西', '\n甘肃', '青海', '\n宁夏', '新疆'
]
}],
yAxis: [
{
'type': 'value',
'name': 'GDP(亿元)',
'max': 53500
},
{
'type': 'value',
'name': '其他(亿元)'
}
],
series: [
{
'name': 'GDP',
'type': 'bar',
'markLine': {
symbol: ['arrow', 'none'],
symbolSize: [4, 2],
itemStyle: {
normal: {
lineStyle: { color: 'orange' },
barBorderColor: 'orange',
label: {
position: 'left',
formatter: function (params) {
return Math.round(params.value);
},
textStyle: { color: 'orange' }
}
}
},
'data': [{ 'type': 'average', 'name': '平均值' }]
},
'data': dataMap.dataGDP['2002']
},
{
'name': '金融', 'yAxisIndex': 1, 'type': 'bar',
'data': dataMap.dataFinancial['2002']
},
{
'name': '房地产', 'yAxisIndex': 1, 'type': 'bar',
'data': dataMap.dataEstate['2002']
},
{
'name': '第一产业', 'yAxisIndex': 1, 'type': 'bar',
'data': dataMap.dataPI['2002']
},
{
'name': '第二产业', 'yAxisIndex': 1, 'type': 'bar',
'data': dataMap.dataSI['2002']
},
{
'name': '第三产业', 'yAxisIndex': 1, 'type': 'bar',
'data': dataMap.dataTI['2002']
}
]
},
{
title: { 'text': '2003全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2003'] },
{ 'data': dataMap.dataFinancial['2003'] },
{ 'data': dataMap.dataEstate['2003'] },
{ 'data': dataMap.dataPI['2003'] },
{ 'data': dataMap.dataSI['2003'] },
{ 'data': dataMap.dataTI['2003'] }
]
},
{
title: { 'text': '2004全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2004'] },
{ 'data': dataMap.dataFinancial['2004'] },
{ 'data': dataMap.dataEstate['2004'] },
{ 'data': dataMap.dataPI['2004'] },
{ 'data': dataMap.dataSI['2004'] },
{ 'data': dataMap.dataTI['2004'] }
]
},
{
title: { 'text': '2005全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2005'] },
{ 'data': dataMap.dataFinancial['2005'] },
{ 'data': dataMap.dataEstate['2005'] },
{ 'data': dataMap.dataPI['2005'] },
{ 'data': dataMap.dataSI['2005'] },
{ 'data': dataMap.dataTI['2005'] }
]
},
{
title: { 'text': '2006全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2006'] },
{ 'data': dataMap.dataFinancial['2006'] },
{ 'data': dataMap.dataEstate['2006'] },
{ 'data': dataMap.dataPI['2006'] },
{ 'data': dataMap.dataSI['2006'] },
{ 'data': dataMap.dataTI['2006'] }
]
},
{
title: { 'text': '2007全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2007'] },
{ 'data': dataMap.dataFinancial['2007'] },
{ 'data': dataMap.dataEstate['2007'] },
{ 'data': dataMap.dataPI['2007'] },
{ 'data': dataMap.dataSI['2007'] },
{ 'data': dataMap.dataTI['2007'] }
]
},
{
title: { 'text': '2008全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2008'] },
{ 'data': dataMap.dataFinancial['2008'] },
{ 'data': dataMap.dataEstate['2008'] },
{ 'data': dataMap.dataPI['2008'] },
{ 'data': dataMap.dataSI['2008'] },
{ 'data': dataMap.dataTI['2008'] }
]
},
{
title: { 'text': '2009全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2009'] },
{ 'data': dataMap.dataFinancial['2009'] },
{ 'data': dataMap.dataEstate['2009'] },
{ 'data': dataMap.dataPI['2009'] },
{ 'data': dataMap.dataSI['2009'] },
{ 'data': dataMap.dataTI['2009'] }
]
},
{
title: { 'text': '2010全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2010'] },
{ 'data': dataMap.dataFinancial['2010'] },
{ 'data': dataMap.dataEstate['2010'] },
{ 'data': dataMap.dataPI['2010'] },
{ 'data': dataMap.dataSI['2010'] },
{ 'data': dataMap.dataTI['2010'] }
]
},
{
title: { 'text': '2011全国宏观经济指标' },
series: [
{ 'data': dataMap.dataGDP['2011'] },
{ 'data': dataMap.dataFinancial['2011'] },
{ 'data': dataMap.dataEstate['2011'] },
{ 'data': dataMap.dataPI['2011'] },
{ 'data': dataMap.dataSI['2011'] },
{ 'data': dataMap.dataTI['2011'] }
]
}
]
};
window.onresize = myChart.resize;
// 为echarts对象加载数据
myChart.setOption(option);
}
);
</script>
<!-- 为ECharts准备一个具备大小(宽高)的Dom -->
<div id="c_chart"></div>
2:分析后 我需要的数据格式如下
//{
////max : 26600,
//2011: [3752.48,5928.32,13126.86,6635.26,8037.69,12152.15,5611.48,5962.41,7927.89,25203.28,16555.58,8309.38,9069.2,6390.55,24017.11,15427.08,9815.94,9361.99,26447.38,5675.32,714.5,5543.04,11029.13,2194.33,3780.32,208.79,6935.59,2377.83,975.18,1056.15,3225.9],
//2010:[3388.38,4840.23,10707.68,5234,6367.69,9976.82,4506.31,5025.15,7218.32,21753.93,14297.93,6436.62,7522.83,5122.88,21238.49,13226.38,7767.24,7343.19,23014.53,4511.68,571,4359.12,8672.18,1800.06,3223.49,163.92,5446.1,1984.97,744.63,827.91,2592.15],
//2009:[2855.55,3987.84,8959.83,3993.8,5114,7906.34,3541.92,4060.72,6001.78,18566.37,11908.49,4905.22,6005.3,3919.45,18901.83,11010.5,6038.08,5687.19,19419.7,3381.54,443.43,3448.77,6711.87,1476.62,2582.53,136.63,4236.42,1527.24,575.33,662.32,1929.59],
//2008:[2626.41,3709.78,8701.34,4242.36,4376.19,7158.84,3097.12,4319.75,6085.84,16993.34,11567.42,4198.93,5318.44,3554.81,17571.98,10259.99,5082.07,5028.93,18502.2,3037.74,423.55,3057.78,5823.39,1370.03,2452.75,115.56,3861.12,1470.34,557.12,609.98,2070.76],
//2007:[2509.4,2892.53,7201.88,3454.49,3193.67,5544.14,2475.45,3695.58,5571.06,14471.26,10154.25,3370.96,4476.42,2975.53,14647.53,8282.83,4143.06,3977.72,16004.61,2425.29,364.26,2368.53,4648.79,1124.79,2038.39,98.48,2986.46,1279.32,419.03,455.04,1647.55],
//2006:[2191.43,2457.08,6110.43,2755.66,2374.96,4566.83,1915.29,3365.31,4969.95,12282.89,8511.51,2711.18,3695.04,2419.74,12574.03,6724.61,3365.08,3187.05,13469.77,1878.56,308.62,1871.65,3775.14,967.54,1705.83,80.1,2452.44,1043.19,331.91,351.58,1459.3],
//2005:[2026.51,2135.07,5271.57,2357.04,1773.21,3869.4,1580.83,2971.68,4381.2,10524.96,7164.75,2245.9,3175.92,1917.47,10478.62,5514.14,2852.12,2612.57,11356.6,1510.68,240.83,1564,3067.23,821.16,1426.42,63.52,1951.36,838.56,264.61,281.05,1164.79],
//2004:[1853.58,1685.93,4301.73,1919.4,1248.27,3061.62,1329.68,2487.04,3892.12,8437.99,6250.38,1844.9,2770.49,1566.4,8478.69,4182.1,2320.6,2190.54,9280.73,1253.7,205.6,1376.91,2489.4,681.5,1281.63,52.74,1553.1,713.3,211.7,244.05,914.47],
//2003:[1487.15,1337.31,3417.56,1463.38,967.49,2898.89,1098.37,2084.7,3209.02,6787.11,5096.38,1535.29,2340.82,1204.33,6485.05,3310.14,1956.02,1777.74,7592.78,984.08,175.82,1135.31,2014.8,569.37,1047.66,47.64,1221.17,572.02,171.92,194.27,719.54],
//2002:[1249.99,1069.08,2911.69,1134.31,754.78,2609.85,943.49,1843.6,2622.45,5604.49,4090.48,1337.04,2036.97,941.77,5184.98,2768.75,1709.89,1523.5,6143.4,846.89,148.88,958.87,1733.38,481.96,934.88,32.72,1007.56,501.69,144.51,153.06,603.15]
//}
每个地区可以作为一个数组,每个年份和这一年份里面各地区的数据是以键值对的形式配对的年份为key 各地区数据为一个数组
3:设计一个如下类 作为model (本例中只是按照我的需求设计的类)
//public class TimeLinOutData
//{
// public string time;
// public string NameOfIndex;
// public ArrayList Area;
// public ArrayList Value;
//}
3.1 再写一个业务处理类 放在业务逻辑层
/// <summary>
/// Echarts业务处理类
/// </summary>
public class ChartsOperation
{
public List<TimeLinOutData> GetEchartDataOperation(DataSet ds)
{
List<TimeLinOutData> list = new List<TimeLinOutData>();
ArrayList NameOfIndex = new ArrayList();
ArrayList Area = new ArrayList();
ArrayList arryyear = new ArrayList();
ArrayList DtNotNull = new ArrayList();
//先确定有哪些指标名称
foreach (DataTable dt in ds.Tables)
{
if (dt.Rows.Count>0)
{
if (!NameOfIndex.Contains(dt.Rows[0][0].ToString()))
{
NameOfIndex.Add(dt.Rows[0][0].ToString());
}
}
}
//确定多少个年份 多少个地区
foreach (DataTable dt in ds.Tables)
{
if (dt.Rows.Count > 0) { DtNotNull.Add(dt); };
if (dt != null)
{
for (int i = 0; i < dt.Rows.Count; i++)
{
if (!arryyear.Contains(dt.Rows[i][2].ToString().Trim()))
{
arryyear.Add(dt.Rows[i][2].ToString().Trim());//将不重复的年份放进year数组
}
if (!Area.Contains(dt.Rows[i][3].ToString().Trim()))
{ //判断集合中是否已存在该地区 没有则插入
Area.Add(dt.Rows[i][3].ToString().Trim());//将不重复的地区放进Area数组
}
}
}
}
arryyear.Sort();
//确定创建多少个TimeLinOutData对象
foreach (var item in NameOfIndex)
{
TimeLinOutData tldata = new TimeLinOutData();
tldata.Area = Area;
tldata.Value = new ArrayList();
tldata.NameOfIndex = item.ToString();
Dictionary<string, ArrayList> dict = new Dictionary<string, ArrayList>();
for (int i = 0; i < arryyear.Count; i++)//循环每一个年份 具体赋值
{
ArrayList arrayvalue = new ArrayList();
foreach (var Aitem in Area)
{
bool T = false;//表示当前指标 当前年份 当前地区 是否找到一个唯一的值 没有值则赋0
foreach (DataTable dt in DtNotNull)//每次循环都是不同的指标数据表的循环
{
DtNotNull.IndexOf(dt);
//处理不同的年份
//循环取出 地区 和值 并放到对应的数组里
//将不同地区的值放入Value数组 每个指标不同地区相同年份的值
for (int j = 0; j < dt.Rows.Count; j++) //查找每一个年份对应的不同地区的能匹配到的数值
{
//往键值对集合里面插入数据
if ((string)arryyear[i] == dt.Rows[j][2].ToString().Trim() && dt.Rows[j][0].ToString().Trim() == item.ToString() && dt.Rows[j][3].ToString().Trim()==Aitem.ToString())
{ //如果年份相等 指标名称相同 地区不同 则将数值依次插入到数组里面
//现将数据放入数组里 再将数组放到键值对中 最后将键值对放到 TimeLinOutData对象的value属性中
arrayvalue.Add(dt.Rows[j][1].ToString());
T = true;//表示当前指标 当前年份 当前地区 找到了一个唯一值
}
}
}
if (!T) {
arrayvalue.Add("0");
}
}
//每一个年份 和各地区数值插入后 进行下一年遍历前将数组插入到键值对中
dict.Add(arryyear[i].ToString(), arrayvalue);
dict.OrderBy(o => o.Key);
tldata.Value.AddRange(dict);//每一个年份环结束前 都要讲匹配的值付给对象的value集合 一年赋一次值
dict.Clear();
//清空arrayvalue 进行下一次遍历
}
list.Add(tldata);
}
return list;
}
}
3.2 代码中调用
ds = dbhelper.GetDataSet(sb.ToString(), true);
List<TimeLinOutData> listLineOut = chartsoperation.GetEchartDataOperation(ds);
foreach (DataTable ditem in ds.Tables)//item不要用var dt很大的时候装箱很费时间 最好写明确的DataTable
{
if (ditem != null && ditem.Rows.Count > 0)
{
list.Add(ditem);
}
}
return Content(JsonConvert.SerializeObject(listLineOut));
4 后台返回的json数据格式如图
4.1前端接收解析数据部分
这里为了方便在浏览器中断点调试js 我封装到一个js文件中
$.ajax({//获取返回的数据
type: "post",
url: "/chart/GetAsynchronousData/GetTimeLinOutData/",
data: { "AjaxData": AjaxData },
timeout: 60000,
success: function (ret) {
if (ret.length == 0) {
$('#SpecificGraphics').load("/chart/GChart/pvGChart404");
}else {
var cunlist = eval("(" + ret + ")");
ALLData = cunlist;//allldata是全局变量 下面几个都是全局变量 是数据包
AllArea = []; //是所有地区
ALLdataIndex = {};//所有指标
ALLselectDataIndex = [];
$.each(cunlist, function (i, item) {
var dataindex = 'data' + i;
var dataspecific = "";
var cun_Area = [];
$.each(item["Area"], function (i, item) {
if ($.inArray(item, AllArea) == -1) {
AllArea.push(item);
}
});
if ($.inArray(item["NameOfIndex"], ALLdataIndexName) == -1) { //如下步骤是为了将数据封装成一个类似官方案例中的dataMap一样的对象
var cunindexname = item["NameOfIndex"]; //因为项目中随意组合的条件太多,此处我写的是通用代码 无法准确指定指标的 //名称和个数所以动态生成一个类似dataMap的对象
ALLdataIndexName.push(item["NameOfIndex"]);
ALLdataIndex[cunindexname] = true;
ALLselectDataIndex.push(item["NameOfIndex"]);
}
});
$('#SpecificGraphics').html("");
$('#SpecificGraphics').load("/chart/GChart/TimeLine/");//加载子页面
}
},
error: function (request, error) {
if (error == "timeout") {
}
else {
}
},
complete: function () {
switchSrchPnl(0);
}
});
----以上代码是模板页中写的 下方的是js文件中的-----
/*
zhouzl test
*/
var dataMap = {};
var MaxData = 0;
var unititeye = "%";
var ret = '@ViewBag.data';
function dataFormatter(obj) {
var pList = AllArea;
// AreaList
var temp;
var max = 0;
for (var j = 0; j < ALLtime.length;j++) //此处根据自己项目的需要更改
{
var year = ALLtime[j];
temp = obj[year];
for (var i = 0, l = temp.length; i < l; i++) {
max = Math.max(max, temp[i]);
obj[year][i] = {
name: pList[i],
value: temp[i]
}
}
obj[year + 'max'] = Math.floor(max / 100) * 100;
}
return obj;
}
function dataMix(list) {
var mixData = {};
for (var i = 0, l = list.length; i < l; i++) {
for (var key in list[i]) {
if (list[i][key] instanceof Array) {
mixData[key] = mixData[key] || [];
for (var j = 0, k = list[i][key].length; j < k; j++) {
mixData[key][j] = mixData[key][j]
|| { name: list[i][key][j].name, value: [] };
mixData[key][j].value.push(list[i][key][j].value);
}
}
}
}
return mixData;
}
function getdataTimeLine() {
cunlist = ALLData; // ALLData
ALLtimeFirst = ' ';
ALLtimeEnd = ' ';
var dataMap = {};
ALLtime = [];//每次重新装填之前先清空
var gdp = [];
$.each(cunlist, function (i, item) {//取所有时间
var cunvalue = item["Value"];
var cunzvalue = '';
for (var j = 0; j < cunvalue.length; j++) {//取到每一个元素
cunzvalue = cunvalue[j];
var cunkey = cunzvalue["Key"]
if ($.inArray(cunzvalue["Key"], ALLtime) == -1) {
ALLtime.push(cunzvalue["Key"]);
}
}
});
ALLtimeFirst = ALLtime[0];
ALLtimeEnd = ALLtime[ALLtime.length - 1];
//alert(ALLtimeEnd);
$.each(cunlist, function (i, item) {//取时间对应的值
var cunvalue = item["Value"];
//alert(JSON.stringify(item["Value"]))
var cunzvalue = '';
var dataindex = 'data' + i;
var dataspecific = {};
for (var j = 0; j < cunvalue.length; j++) {//取到每一个元素
cunzvalue = cunvalue[j];
var cunkey = cunzvalue["Key"]
dataspecific[cunkey] = cunzvalue["Value"];
}
dataindexnum = i;
// alert("dataspecific:" + JSON.stringify(dataspecific));
dataMap[dataindex] = dataFormatter(dataspecific);
var num = ALLtime[0];
//alert(JSON.stringify(dataMap[dataindex][num]));
$.each(dataMap[dataindex][num], function (i, item) {
gdp.push(item['value']);
});
});
var unit = " ";
var starnum = ALLdataIndexName[0].indexOf("(");
var endnum = ALLdataIndexName[0].indexOf(")");
var ss = ALLdataIndexName[0].substring(starnum + 1, endnum);
ArrylistSeries = [];
for (var i = 0; i <= dataindexnum; i++) {
var cundataindex = 'data' + i;
var num = ALLtime[0];
var cun_dataMap_index = [];
$.each(dataMap[cundataindex][num], function (i, item) {
if (MaxData < item["value"])
{ MaxData=item["value"] }//取得最大值 为y轴设置黄金比例设置值
cun_dataMap_index.push(item["value"]);
});
if (ALLdataIndexName[i].indexOf("%") > 0) {
ArrylistSeries.push({
'name': ALLdataIndexName[i], 'yAxisIndex': 1, 'type': 'line',
'markLine': {
symbol: ['arrow', 'none'],
symbolSize: [4, 2],
itemStyle: {
normal: {
lineStyle: { color: 'orange' },
barBorderColor: 'orange',
label: {
position: 'left',
formatter: function (params) {
return Math.round(params.value);
},
textStyle: { color: 'orange' }
}
}
},
'data': [{ 'type': 'max', 'name': '最大值' }]
},
'data': cun_dataMap_index
})
} else if (ALLdataIndexName[i].indexOf("‰") > 0) {
unititeye = "‰";
ArrylistSeries.push({
'name': ALLdataIndexName[i], 'yAxisIndex': 1, 'type': 'line',
'markLine': {
symbol: ['arrow', 'none'],
symbolSize: [4, 2],
itemStyle: {
normal: {
lineStyle: { color: 'orange' },
barBorderColor: 'orange',
label: {
position: 'left',
formatter: function (params) {
return Math.round(params.value);
},
textStyle: { color: 'orange' }
}
}
},
'data': [{ 'type': 'max', 'name': '最大值' }]
},
'data': cun_dataMap_index
})
}else {
ArrylistSeries.push({
'name': ALLdataIndexName[i], 'yAxisIndex': 0, 'type': 'bar',
'data': cun_dataMap_index
})
}
}
Optionszdy = []; //下面是根据规则动态拼出 option的过程 可参考上面整理的官方案例
Optionszdy.push({
title: {
'text': ALLtime[0]+'全国宏观经济指标',
'subtext': '数据来源中国医药工业信息中心'
},
tooltip: { 'trigger': 'axis' },
legend: {
x: 'right',
'data': ALLselectDataIndex,
'selected': JSON.stringify(ALLdataIndex)
},
toolbox: {
'show': true,
orient: 'vertical',
x: 'right',
y: 'center',
'feature': {
'mark': { 'show': true },
'dataView': { 'show': true, 'readOnly': false },
'magicType': { 'show': true, 'type': ['line', 'bar', 'stack', 'tiled'] },
'restore': { 'show': true },
'saveAsImage': { 'show': true }
}
},
calculable: true,
grid: { 'y': 80, 'y2': 100 },
xAxis: [{
'type': 'category',
'axisLabel': { 'interval': 0 },
'data': AllArea
}],
yAxis: [
{
'type': 'value',
'axisLabel': { formatter: '{value}' },
'name': ss
},
{
'type': 'value',
'axisLabel': { formatter: '{value}' },
'name': unititeye
}
],
series: ArrylistSeries
});
var seriescollec = [];
for (var i = 1; i < ALLtime.length; i++) {
var num = ALLtime[i];
for (var j = 0; j <= dataindexnum; j++) {
var cundataindex = 'data' + j;
var cun_dataMap_index = [];
$.each(dataMap[cundataindex][num], function (i, item) {
cun_dataMap_index.push(item["value"]);
});
seriescollec.push({ 'data': cun_dataMap_index });
}
var Series = {
title: { 'text': num + '全国宏观经济指标' },
series: seriescollec
}
Optionszdy.push(Series);
Series = {};
seriescollec = [];
ArrylistSeries = [];
}
}
dataMap.dataGDP_Estate = dataMix([dataMap.dataEstate, dataMap.dataGDP]);
// 路径配置
require.config({
paths: {
echarts: 'http://echarts.baidu.com/build/dist'
}
});
// 使用
require(
[
'echarts',
'echarts/chart/bar', // 使用柱状图就加载bar模块,按需加载
'echarts/chart/line'
],
function (ec) {
getdataTimeLine();
ALLselectDataIndex = [];
ALLdataIndexName = [];
//// 基于准备好的dom,初始化echarts图表
var myChart = ec.init(document.getElementById('c_chart'));
var option = {
timeline: {
data: ALLtime ,
label: {
formatter: function (s) {
return s.slice(0, 10);
}
},
autoPlay: true,
type:'number',
playInterval: 2000
},
options: Optionszdy
};
window.onresize = myChart.resize;
// 为echarts对象加载数据
myChart.setOption(option);
}
);
- 使用canvas编写时间轴插件
使用canvas编写时间轴插件 背景 项目中有一个视频广场的功能,需要一个时间轴类似视频播放中进度条功能一样显示录像情况,并且可以点击.拖动.放大缩小展示时间轴,获取到时间轴的某个时间.原来的时间轴是 ...
- Android 时间轴的实现
时间轴 时间轴,顾名思义就是将发生的事件按照时间顺序罗列起来,给用户带来一种更加直观的体验.京东和淘宝的物流顺序就是一个时间轴(如图),想必大家都不陌生. 时间轴的初探 初次见到这种UI,感觉整个布局 ...
- 推荐5款实用的jQuery时间轴插件
1.使用CSS3和jQuery制作的水平时间轴 这是一个可以在PC和移动端表现非常棒的水平时间轴,它由上部水平滑块和下部时间点对应的内容区块,点击时间轴上的时间点,下部内容会滑动到对应的内容区块.使用 ...
- Asp.net+jquery+ajaxpro异步仿Facebook纵向时间轴效果
Asp.net+jquery+ajaxpro异步仿Facebook纵向时间轴效果 在一个项目中,用到了时间轴展示产品的开发进度,为了更好用户体验,想到了Facebook的timeline效果, 搜了一 ...
- Alamofire源码解读系列(十二)之时间轴(Timeline)
本篇带来Alamofire中关于Timeline的一些思路 前言 Timeline翻译后的意思是时间轴,可以表示一个事件从开始到结束的时间节点.时间轴的概念能够应用在很多地方,比如说微博的主页就是一个 ...
- Python脚本之Lrc歌词去时间轴转Txt文件,附带酷狗音乐APP关联已有krc歌词
一.Lrc歌词去时间轴转Txt文件 环境:Python2.7.x, Mac(Windows需装cygwin环境,当然你也可以自己改代码,Python新手,勿喷) # -*- coding: UTF-8 ...
- 基于jQuery发展历程时间轴特效代码
分享一款基于jQuery发展历程时间轴特效代码,带左右箭头,数字时间轴选项卡切换特效下载.效果图如下: 在线预览 源码下载 实现的代码. html代码: <div id="time ...
- jQuery鼠标滑过横向时间轴效果
jQuery鼠标滑过横向时间轴效果---效果图: jQuery鼠标滑过横向时间轴效果---全部代码: <!DOCTYPE html> <html> <head> & ...
- echart 时间轴、以及y轴值过大但是变化不大显示感觉不出变化的问题+弹出框拖动div事件
1.时间轴 echart 提供了一种图表,如果x轴是一个时间范围,并且是连续的,如果用传统的数据驱动会很慢,所以用时间轴的方式 function initCurve(_data){ var resul ...
随机推荐
- Lucene学习入门——核心类API
本文讲解Lucene中,创建索引.搜索等常用到的类API 搜索操作比索引操作重要的多,因为索引文件只被创建一次,却要被搜索多次. 索引过程的核心类: 执行简单的索引过程需要如下几个类:IndexWri ...
- Python基础学习之字符串(2)
字符串常用方法 1.s.capitalize() 描述:返回字符串s的副本,并将首字符变为大写. 示例: >>> s='yesterday when I was Young!' &g ...
- Git的使用(详细)
一下内容引自网络 原帖:http://blog.jobbole.com/78960/ 原文出处: 涂根华的博客
- Multi-modal Sentence Summarization with Modality Attention and Image Filtering 论文笔记
文章已同步更新在https://ldzhangyx.github.io/,欢迎访问评论. 五个月没写博客了,不熟悉我的人大概以为我挂了…… 总之呢这段时间还是成长了很多,在加拿大实习的两个多月来 ...
- Altium_Designer-原理图库如何添加低电平有效的管脚?
在编辑元件原理图符号时,在display name选项中将要加低电平的字符后面都加上“\”即可,如图:
- 【PHP 基础类库】Prototype 原型版教学文章!
前言 大家好我是:石不易,今天我为大家带来了PHP基础类库原型版的教学文章,至此本人的作品线已分为三大类,分别是:JavaScript前端框架(封装库).PHP模板引擎.以及PHP基础类库.该类库历时 ...
- 【转】Activity生命周期详解
三个循环 提供两个关于Activity的生命周期模型图示帮助理解: 图1 图2 从图2所示的Activity生命周期 ...
- UIView的层次调整,及子view布局模式自动布局模式(停靠模式)
UIView*view1=[[UIView alloc]initWithFrame:CGRectMake(10,30,300,30)]; view1.backgroundColor=[UIColor ...
- 问题 C: B C++时间类的运算符重载
题目描述 C++时间类的运算符重载 定义一个时间类Time,其数据成员为表示时间的小时(hour).分(minute),秒(second). 重载运算符“+”,使之能用于时间对象的加法运算:重载运算符 ...
- 实现接口Controller定义控制器
实现接口Controller定义控制器 控制器提供访问应用程序的行为,通常通过服务接口定义或注解定义两种方法实现. 控制器解析用户的请求并将其转换为一个模型.在Spring MVC中一个控制器可以包含 ...