[BZOJ5110]Yazid的新生舞会
题目大意:
给你一个长度为$n(n\leq 5\times 10^5)$的序列$A_{1\sim n}$。求满足区间众数在区间内出现次数严格大于$\lfloor\frac{r-l+1}{2}\rfloor$的区间$[l,r]$的个数。
思路:
分治。
对于一个区间$[l,r]$,设$mid=\lfloor\frac{l+r}{2}\rfloor$,我们可以求出所有经过$mid$的区间内能够成为众数的所有数。
不难发现所有的区间众数满足如下一个性质:如果$x$是区间$[l,r]$的众数,那么对于$l\leq x\leq r$,$x$一定是区间$[l,k]$或区间$(k,r]$的众数。
利用这一性质,我们可以令$k=mid$,这样就可以$O(n)$从$mid$出发往左右两边扫,求出能够成为众数的所有数。
接下来枚举每个众数$x$,求一下当前$[l,r]$区间中,以$x$作为众数的子区间个数。
具体我们可以先从$mid$往左扫,设往左扫到的端点为$b$,记录一下对于不同的$b$,$mid-b+1-cnt[x]$不同取值的出现次数。然后再往右扫,求出对于当前右端点$e$,求出满足$e-b+1-cnt[x]>\lfloor\frac{e-b+1}{2}\rfloor$的区间$[b,e]$的个数,这可以用前缀和快速求出。
这样我们就统计了区间$[l,r]$,经过$mid$的所有子区间。
对于不经过$mid$的子区间可以递归求解。
递归树中,每一层区间长度加起来是$n$,可能的众数个数有$\log n$个,每一层的时间复杂度是$O(n\log n)$。总共有$\log n$层,总的时间复杂度是$O(n\log^2 n)$。
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
int a[N],pos[N],num[N],cnt[N*];
int64 ans;
void solve(const int &l,const int &r) {
if(l==r) {
ans++;
return;
}
const int mid=(l+r)/;
solve(l,mid);
solve(mid+,r);
for(register int i=mid;i>=l;i--) {
if(++cnt[a[i]]>(mid-i+)/) {
if(!pos[a[i]]) {
num[pos[a[i]]=++num[]]=a[i];
}
}
}
for(register int i=mid+;i<=r;i++) {
if(++cnt[a[i]]>(i-mid)/) {
if(!pos[a[i]]) {
num[pos[a[i]]=++num[]]=a[i];
}
}
}
for(register int i=l;i<=r;i++) {
pos[a[i]]=cnt[a[i]]=;
}
for(register int i=;i<=num[];i++) {
int sum=r-l+,max=sum,min=sum;
cnt[sum]=;
for(register int j=l;j<mid;j++) {
if(a[j]==num[i]) {
sum++;
} else {
sum--;
}
max=std::max(max,sum);
min=std::min(min,sum);
cnt[sum]++;
}
if(a[mid]==num[i]) {
sum++;
} else {
sum--;
}
for(register int i=min;i<=max;i++) {
cnt[i]+=cnt[i-];
}
for(register int j=mid+;j<=r;j++) {
if(a[j]==num[i]) {
sum++;
} else {
sum--;
}
ans+=cnt[std::min(max,sum-)];
}
for(register int i=min;i<=max;i++) {
cnt[i]=;
}
}
num[]=;
}
int main() {
const int n=getint(); getint();
for(register int i=;i<=n;i++) {
a[i]=getint();
}
solve(,n);
printf("%lld\n",ans);
return ;
}
[BZOJ5110]Yazid的新生舞会的更多相关文章
- 【BZOJ5110】[CodePlus2017]Yazid 的新生舞会 线段树
[BZOJ5110][CodePlus2017]Yazid 的新生舞会 Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一 ...
- bzoj5110: [CodePlus2017]Yazid 的新生舞会
Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一个子区间[l,r] ,如果该子区间内的众数在该子区间的出现次数严格大于( ...
- 【bzoj5110】Yazid的新生舞会
这里是 $THUWC$ 选拔时间 模拟赛的时候犯 $SB$ 了,写了所有的部分分,然后直接跑过了 $4$ 个大样例(一个大样例是一个特殊情况)…… 我还以为我非常叼,部分分都写对了,于是就不管了…… ...
- [loj 6253] Yazid的新生舞会
(很久之前刷的题现在看起来十分陌生a) 题意: 给你一个长度为n的序列A,定义一个区间$[l,r]$是“新生舞会的”当且仅当该区间的众数次数严格大于$\frac{r-l+1}{2}$,求有多少子区间是 ...
- 【BZOJ5110】[CodePlus2017]Yazid 的新生舞会
题解: 没笔的时候我想了一下 发现如果不是出现一半次数而是k次,并不太会做 然后我用前缀和写了一下发现就是维护一个不等式: 于是就可以随便维护了
- 【bzoj5110】[CodePlus2017]Yazid 的新生舞会 Treap
题目描述 求一个序列所有的子区间,满足区间众数的出现次数大于区间长度的一半. 输入 第一行2个用空格隔开的非负整数n,type,表示序列的长度和数据类型.数据类型的作用将在子任务中说明. 第二行n个用 ...
- BZOJ5110 CodePlus2017Yazid 的新生舞会(线段树)
考虑统计每个数字的贡献.设f[i]为前缀i中该数的出现次数,则要统计f[r]-f[l]>(r-l)/2的数对个数,也即2f[r]-r>2f[l]-l. 注意到所有数的f的总变化次数是线性的 ...
- BZOJ.5110.[CodePlus2017]Yazid 的新生舞会(线段树/树状数组/分治)
LOJ BZOJ 洛谷 又来发良心题解啦 \(Description\) 给定一个序列\(A_i\).求有多少个子区间,满足该区间众数出现次数大于区间长度的一半. \(n\leq5\times10^5 ...
- 「CodePlus 2017 11 月赛」Yazid 的新生舞会(树状数组/线段树)
学习了新姿势..(一直看不懂大爷的代码卡了好久T T 首先数字范围那么小可以考虑枚举众数来计算答案,设当前枚举到$x$,$s_i$为前$i$个数中$x$的出现次数,则满足$2*s_r-r > 2 ...
随机推荐
- NGUI-为Popuplist的下拉选项添加删除功能
NGUI例子里的popuplist是这样的:,但有时我们希望下拉选项都有删除功能,也就是这样:,一种方法是改popuplist的源码,我想这个实现起来不难,但现在我想说的是用反射来实现此功能,以及其他 ...
- CCF-NOIP-2018 提高组(复赛) 模拟试题(一)
T1 帽子戏法 问题描述 小 Y 有一个\(n*n*n\)的"帽子立方体" ,即一个\(n\)层的立方体,每层的帽子都 可以排成\(n*n\)的矩阵. "帽子立方体&qu ...
- Ubuntu系列问题
一.Ubuntu16.04 intel_rapl : no valid rapl domains found in packge0 echo 'blacklist intel_rapl' >&g ...
- over窗口函数进阶
over窗口函数的其他灵活的用法.即,统计当前行的前N行及后N行数据.转自:https://blog.csdn.net/ck3207/article/details/84954511 先来看一下数据的 ...
- [SDOI2015][bzoj3990] 序列 [搜索]
题面 传送门 思路 首先,这道题目有一个非常显然(但是我不会严格证明,只能意会一下)的结论:一个合法的操作序列中,任意两个操作是可以互换的 那么,这个结论加上本题极小的数据范围,为什么不搜索一下呢? ...
- CI的多级目录的功能
https://segmentfault.com/q/1010000008317555?_ea=1621531
- reboot和init 6之间的区别
init命令用于改变操作系统的运行级别.Init 6是重新启动机器.reboot也是重新启动机器.那么这两个命令到底有什么区别呢?对这两个操作使用man命令看到的内容如下:"init 6&q ...
- Http错误大全
HTTP/IIS错误类型 1XX 信息提示 用于表示临时的响应.客户端在收到常规响应之前,应准备接受一个或多个1XX响应. 100 :继续101 :切换协议 2XX 成功 表示服务器成功地接受了客户端 ...
- Topcoder SRM 606 div1题解
打卡! Easy(250pts): 题目大意:一个人心中想了一个数,另一个人进行了n次猜测,每一次第一个人都会告诉他实际的数和猜测的数的差的绝对值是多少,现在告诉你所有的猜测和所有的差,要求你判断心中 ...
- Hibernate中双向多对多的两种配置方式
Hibernate中双向多对多的两种配置方式 1.建立多对多双向关联关系 package cn.happy.entitys; import java.util.HashSet; import java ...