【BZOJ2790】[Poi2012]Distance 筛素数+调和级数
【BZOJ2790】[Poi2012]Distance
Description
对于两个正整数a、b,这样定义函数d(a,b):每次操作可以选择一个质数p,将a变成a*p或a/p,
如果选择变成a/p就要保证p是a的约数,d(a,b)表示将a变成b所需的最少操作次数。例如d(69,42)=3。
现在给出n个正整数A1,A2,...,An,对于每个i (1<=i<=n),求最小的j(1<=j<=n)使得i≠j且d(Ai,Aj)最小。
Input
第一行一个正整数n (2<=n<=100,000)。第二行n个正整数A1,A2,...,An (Ai<=1,000,000)。
Output
输出n行,依次表示答案。
Sample Input
1
2
3
4
5
6
Sample Output
1
1
2
1
2
题解:我们设s[i]表示i的所有质因子的幂次之和,那么从i变为1的代价就是s[i],从i变为j的代价就是s[i]+s[j]-s[gcd(i,j)],然后怎么做呢?
此时最重要的一个思路就是讨论gcd(i,j)对它的倍数的贡献(与和式的改变求和指标类似)
我们枚举i的每个倍数,找出最小的j使得s[j]最小且j在原数列中出现过且出现过的位置最靠前,这样我们就能用j去更新i的其他倍数,但是j用谁来更新呢?于是我们还需要找出一个次大值k,用它来更新j。
此外别忘了判重。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=100010;
const int maxm=1000010;
const int inf=0x3f3f3f3f;
int n,m,num,m1,m2;
int v[maxn],pri[maxn],s[maxm],f[maxm],g[maxm],mn[maxm],next[maxm];
bool np[maxm];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,j,k;
memset(f,0x3f,sizeof(f));
for(i=1;i<=n;i++)
v[i]=rd(),next[v[i]]=(mn[v[i]]&&!next[v[i]])?i:next[v[i]],mn[v[i]]=(!mn[v[i]])?i:mn[v[i]],m=max(m,v[i]);
s[1]=0;
for(i=2;i<=m;i++)
{
if(!np[i]) pri[++num]=i,s[i]=1;
for(j=1;j<=num&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1,s[i*pri[j]]=s[i]+1;
if(i%pri[j]==0) break;
}
}
s[0]=mn[0]=inf;
for(i=1;i<=m;i++)
{
m1=m2=0;
for(j=i;j<=m;j+=i)
{
if(!mn[j]) continue;
if(s[m1]>s[j]||(s[m1]==s[j]&&mn[m1]>mn[j])) m2=m1,m1=j;
else if(s[m2]>s[j]||(s[m2]==s[j]&&mn[m2]>mn[j])) m2=j;
}
for(j=i;j<=m;j+=i)
{
k=(j==m1)?m2:m1;
if(f[j]>s[j]+s[k]-2*s[i]) f[j]=s[j]+s[k]-2*s[i],g[j]=mn[k];
else if(f[j]==s[j]+s[k]-2*s[i]&&g[j]>mn[k]) g[j]=min(g[j],mn[k]);
}
}
for(i=1;i<=n;i++)
{
if(mn[v[i]]==i) printf("%d\n",next[v[i]]?next[v[i]]:g[v[i]]);
else printf("%d\n",mn[v[i]]);
}
return 0;
}
【BZOJ2790】[Poi2012]Distance 筛素数+调和级数的更多相关文章
- [BZOJ2790][Poi2012]Distance
2790: [Poi2012]Distance Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 225 Solved: 115[Submit][Sta ...
- POJ-2689 Prime Distance (两重筛素数,区间平移)
Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13961 Accepted: 3725 D ...
- poj 2689 Prime Distance(大区间筛素数)
http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...
- POJ2689-Prime Distance-区间筛素数
最近改自己的错误代码改到要上天,心累. 这是迄今为止写的最心累的博客. Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2689.Prime Distance-区间筛素数
最近改自己的错误代码改到要上天,心累. 这是迄今为止写的最心累的博客. Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total S ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- CF449C Jzzhu and Apples (筛素数 数论?
Codeforces Round #257 (Div. 1) C Codeforces Round #257 (Div. 1) E CF450E C. Jzzhu and Apples time li ...
- 洛谷P3383 【模板】线性筛素数
P3383 [模板]线性筛素数 256通过 579提交 题目提供者HansBug 标签 难度普及- 提交 讨论 题解 最新讨论 Too many or Too few lines 样例解释有问题 ...
- poj3126 筛素数+bfs
//Accepted 212 KB 16 ms //筛素数+bfs #include <cstdio> #include <cstring> #include <iost ...
随机推荐
- asp.net原理笔记----页面控件类型,页面状况和asp.net编译过程
通过查看asp.net的整个生命周期之后 了解到在aspx的页面生命周期中 调用了BuildControlTree()方法生成页面控件树 之后再调用Rend()方法根据控件树生成html返回 aspx ...
- NetBean 远程开发的好文1 --> NetBeans的远程Linux C开发实践
from: http://blog.csdn.net/jacktan/article/details/9268535 一直以来总觉得NetBeans生活在Eclipse的阴影下,同样做为一款不错的基 ...
- 安全狗两个中危提权+NET提权
1.循环加组复现 for /l %%i in (1,1,1000) do @net user admin admin /add&@ net localgroup administrators ...
- python raise assert
class MyException(Exception): def __init__(self,error_msg): self.error_msg=error_msg def __str__(sel ...
- urlib2 标准代码
import urllib2 def downloadHtml(url,user_agent=None,num_retries=2): print 'Downloading:',url headers ...
- mui 本地打包
第一步:下载HBuilder离线打包Android版SDK 网址:http://ask.dcloud.net.cn/article/38 第二步:导入项目 启动带ADT的eclipse程序,菜单中选择 ...
- 【BIEE】01_下载安装BIEE(Business Intelligence)11g 11.1.1.9.0
环境准备 安装文件 如果操作系统是64位,则下载64位版本,我安装的系统是64位的 1.下载所有安装文件 1.1 Oracle Database 11g R2 下载地址: http://www.ora ...
- 程序员不修复BUG怎么办
在测试过程中,难免遇到开发人员因为一些原因不想修改个别bug的情况.遇到这种问题时,该如何去推进开发修改bug呢? 一.现状分析 1.开发人员为啥不愿意修复BUG? (1)开发与测试对bug的定义理解 ...
- nginx限速
nginx 要实现限速,完整的实现是要限制客户端请求频率,并发连接和传输速度 1.请求限制 Nginx 请求限制的功能来自于 ngx_http_limit_req_module 模块.使用它需要首先在 ...
- Linux Suse 查看wwn号码的方法
查看wwn号码 cat /sys/class/fc_host/host*/port_name *代表全部host目录