【BZOJ3331】[BeiJing2013]压力 Tarjan求点双
【BZOJ3331】[BeiJing2013]压力
Description
Input
Output
Sample Input
1 2
1 3
2 3
1 4
4 2
4 3
Sample Output
1
1
2
HINT
【样例解释】
设备1、2、3之间两两有链接,4只和1有链接。4想向2和3各发送一个数据包。显然,这两个数据包必须要经过它的起点、终点和1。
【数据规模和约定】
对于40%的数据,N,M,Q≤2000
对于60%的数据,N,M,Q≤40000
对于100%的数据,N≤100000,M,Q≤200000
题解:显然先用Tarjan求缩块。。。怎么求呢。。。基本功不扎实又去学了一发。
最后我们会得到一个树形结构,但是。。。怎么得到呢。。。其实对于每个块新建一个点连向块中的所有点即可。
然后就是一个类似于树的东西了,怎么统计树上有哪些路径必经一个点呢?差分即可。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=200010;
int n,m,q,top,tot,sum,cnt;
int sta[maxn],low[maxn],HEAD[maxn],NEXT[maxn<<1],TO[maxn<<1],head[maxn<<1],next[maxn<<2],to[maxn<<2];
int s[maxn<<1],fa[19][maxn<<1],Log[maxn<<1],dep[maxn<<1],Q[maxn<<1];
inline void ADD(int a,int b)
{
TO[cnt]=b,NEXT[cnt]=HEAD[a],HEAD[a]=cnt++;
}
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void tarjan(int x)
{
dep[x]=low[x]=++tot,sta[++top]=x;
for(int y,i=HEAD[x],t;i!=-1;i=NEXT[i])
{
y=TO[i];
if(!dep[y])
{
tarjan(y),low[x]=min(low[x],low[y]);
if(low[y]>=dep[x])
{
sum++;
do
{
t=sta[top--],add(sum,t),add(t,sum);
}while(t!=y);
add(sum,x),add(x,sum);
}
}
else low[x]=min(low[x],dep[y]);
}
}
void dfs(int x)
{
Q[++Q[0]]=x;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[0][x]) fa[0][to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
}
inline int lca(int a,int b)
{
int i;
if(dep[a]<dep[b]) swap(a,b);
for(i=Log[dep[a]-dep[b]];i>=0;i--) if(dep[fa[i][a]]>=dep[b]) a=fa[i][a];
if(a==b) return a;
for(i=Log[dep[a]];i>=0;i--) if(fa[i][a]!=fa[i][b]) a=fa[i][a],b=fa[i][b];
return fa[0][a];
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
//freopen("bz3331.in","r",stdin);
n=rd(),m=rd(),q=rd(),sum=n;
memset(head,-1,sizeof(head)),memset(HEAD,-1,sizeof(HEAD));
int i,j,a,b,c;
for(i=1;i<=m;i++) a=rd(),b=rd(),ADD(a,b),ADD(b,a);
cnt=0,tarjan(1),dep[1]=1,dfs(1);
for(i=2;i<=sum;i++) Log[i]=Log[i>>1]+1;
for(j=1;(1<<j)<=sum;j++) for(i=1;i<=sum;i++) fa[j][i]=fa[j-1][fa[j-1][i]];
for(i=1;i<=q;i++)
{
a=rd(),b=rd(),c=lca(a,b);
s[a]++,s[b]++,s[c]--,s[fa[0][c]]--;
}
for(i=sum;i;i--) a=Q[i],s[fa[0][a]]+=s[a];
for(i=1;i<=n;i++) printf("%d\n",s[i]);
return 0;
}
【BZOJ3331】[BeiJing2013]压力 Tarjan求点双的更多相关文章
- hdu 2460(tarjan求边双连通分量+LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边 ...
- C++[Tarjan求点双连通分量,割点][HNOI2012]矿场搭建
最近在学图论相关的内容,阅读这篇博客的前提是你已经基本了解了Tarjan求点双. 由割点的定义(删去这个点就可使这个图不连通)我们可以知道,坍塌的挖煤点只有在割点上才会使这个图不连通,而除了割点的其他 ...
- [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分)
[Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得 ...
- 6409. 【NOIP2019模拟11.06】困难的图论(Tarjan求点双)
题目描述 Description 给定由 n 个点 m 条边组成的无向连通图,保证没有重边和自环. 你需要找出所有边,满足这些边恰好存在于一个简单环中.一个环被称为简单环,当且仅当它包含的所有点都只在 ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug
题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...
- [HNOI2012]矿场搭建(tarjan求点双)
题目 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无 ...
- BZOJ3331 [BeiJing2013]压力[圆方树+树上差分]
圆方树新技能get.具体笔记见图连通性问题学习笔记. 这题求无向图的必经点,这个是一个固定套路:首先,一张连通的无向图中,每对点双和点双之间是以一个且仅一个割点连接起来的(如果超过一个就不能是割点了) ...
- BZOJ3331: [BeiJing2013]压力
传送门 Tarjan的三大应用之一:求解点双联通分量. 求解点双联通分量.然后缩点,差分优化即可. //BZOJ 3331 //by Cydiater //2016.10.29 #include &l ...
随机推荐
- JavaWeb教程路线
主要内容大概例如以下: 1.开发环境搭建 2.servlet/jsp解说 3.mysql解说 4.JDBC解说 5.ssh解说 6.整合开发 7.样例具体解释
- HIVE 不支持group by 别名
hive不支持group by 别名,如果需要group by 别名的情况,可以使用 别名的 值作为group by 的值
- 【Hadoop】HDFS冗余数据块的自动删除
HDFS冗余数据块的自动删除 在日常维护hadoop集群的过程中发现这样一种情况: 某个节点由于网络故障或者DataNode进程死亡,被NameNode判定为死亡, HDFS马上自动开始数据块的容错拷 ...
- zabbix通过snmp监控linux主机
1.安装net-snmp [root@db01 ~]# yum install -y net-snmp 2.修改配置文件 [root@db01 ~]# vim /etc/snmp/snmpd.conf ...
- iptables 使用场景
25 Most Frequently Used Linux IPTables Rules Examples by RAMESH NATARAJAN on JUNE 14, 2011 At a firs ...
- 清理memcached缓存
清理memcached缓存 学习了:https://blog.csdn.net/allus0918/article/details/50481927 使用telnet登录 flush_all 命令:
- [阿里Hao]Android无线开发的几种经常使用技术
本文由阿里巴巴移动安全client.YunOS资深project师Hao(嵌入式企鹅圈原创团队成员)撰写,是Hao在嵌入式企鹅圈发表的第一篇原创文章.对Android无线开发的几种经常使用技术进行综述 ...
- Java 分支结构 - if...else/switch
Java 分支结构 - if...else/switch 顺序结构只能顺序执行,不能进行判断和选择,因此需要分支结构. Java 有两种分支结构: if 语句 switch 语句 if 语句 一个 i ...
- Python学习笔记(二)网络编程的简单示例
Python中的网络编程比C语言中要简洁很多,毕竟封装了大量的细节. 所以这里不再介绍网络编程的基本知识.而且我认为,从Python学习网络编程不是一个明智的选择. 简单的TCP连接 服务器代码如 ...
- 正则表达式---A bytes of python
正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑. 给定一个正则表达式和另一个 ...