洛谷P3870 [TJOI2009]开关
题目描述
现有\(N(2 ≤ N ≤ 100000)\)盏灯排成一排,从左到右依次编号为:\(1,2,......,N\)。然后依次执行\(M(1 ≤ M ≤ 100000)\)项操作,操作分为两种:第一种操作指定一个区间\([a, b]\),然后改变编号在这个区间内的灯的状态(把开着的灯关上,关着的灯打开),第二种操作是指定一个区间\([a, b]\),要求你输出这个区间内有多少盏灯是打开的。灯在初始时都是关着的。
输入输出格式
输入格式:
第一行有两个整数\(N\)和\(M\),分别表示灯的数目和操作的数目。接下来有\(M\)行,每行有三个整数,依次为:\(c, a, b\)。其中\(c\)表示操作的种类,当\(c\)的值为\(0\)时,表示是第一种操作。当\(c\)的值为\(1\)时表示是第二种操作。\(a\)和\(b\)则分别表示了操作区间的左右边界\((1 ≤ a ≤ b ≤ N)\)。
输出格式:
每当遇到第二种操作时,输出一行,包含一个整数:此时在查询的区间中打开的灯的数目。
输入输出样例
输入样例#1:
4 5
0 1 2
0 2 4
1 2 3
0 2 4
1 1 4
输出样例#1:
1
2
思路:还是一道线段树区间异或,思路跟之前做的洛谷P2574和洛谷P2846完全一样。
代码:
#include<cstdio>
#include<cctype>
#define maxn 100007
#define ls rt<<1
#define rs rt<<1|1
using namespace std;
int n,m,sum[maxn<<2],lazy[maxn<<2];
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
inline void pushup(int rt) {
sum[rt]=sum[ls]+sum[rs];
}
inline void pushdown(int rt, int len) {
if(lazy[rt]) {
lazy[ls]^=1;
lazy[rs]^=1;
sum[ls]=(len-(len>>1))-sum[ls];
sum[rs]=(len>>1)-sum[rs];
lazy[rt]=0;
}
}
void modify(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return;
if(L<=l&&r<=R) {
lazy[rt]^=1;
sum[rt]=r-l+1-sum[rt];
return;
}
pushdown(rt,r-l+1);
int mid=(l+r)>>1;
modify(ls,l,mid,L,R),modify(rs,mid+1,r,L,R);
pushup(rt);
}
int csum(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return 0;
if(L<=l&&r<=R) return sum[rt];
pushdown(rt,r-l+1);
int mid=(l+r)>>1;
return csum(ls,l,mid,L,R)+csum(rs,mid+1,r,L,R);
}
int main() {
n=qread(),m=qread();
for(int i=1,k,l,r;i<=m;++i) {
k=qread(),l=qread(),r=qread();
if(!k) modify(1,1,n,l,r);
else printf("%d\n",csum(1,1,n,l,r));
}
return 0;
}
洛谷P3870 [TJOI2009]开关的更多相关文章
- 洛谷 P3870 [TJOI2009]开关
题意简述 有n盏灯,默认为关,有两个操作: 1.改变l~r的灯的状态(把开着的灯关上,关着的灯打开) 2.查询l~r开着的灯的数量 题解思路 维护一个线段树,支持区间修改,区间查询 懒标记每次^1 代 ...
- 洛谷 P3870 [TJOI2009]开关 题解
原题链接 前置知识: 线段树的单点.区间的修改与查询. 一看,我们需要维护两个操作: 区间取反: 区间求和. (因为区间 \(1\) 的个数,就是区间的和) 典型的 线段树 . 如果你只会线段树的 区 ...
- 洛谷P3870 [TJOI2009] 开关 (线段树)
简单的省选题...... 打异或标记即可. 1 #include<bits/stdc++.h> 2 const int N=2e5+10; 3 using namespace std; 4 ...
- 洛谷 3870 [TJOI2009]开关
[题解] 线段树基础题.对于每个修改操作把相应区间的sum改为区间长度-sum即可. #include<cstdio> #include<algorithm> #include ...
- 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...
- 洛谷P3870开关题解
我们先看题面,一看是一个区间操作,再看一下数据范围,就可以很轻松地想到是用一个数据结构来加快区间查询和修改的速度,所以我们很自然的就想到了线段树. 但是这个题还跟普通的线段树不一样,这个题可以说要思考 ...
- 洛谷 p3870 开关 线段树模板
这两天学了很长时间于是做了一道水题 我就用了模板,就连任何优化都没有 就AC了,复杂度也很爆炸10个点1500多毫秒 这个题就是把lazy[]改成记录下修改的次数,每次修改的时候mod 2,因为反过来 ...
- Solution -「ZJOI 2019」「洛谷 P5326」开关
\(\mathcal{Description}\) Link. 有 \(n\) 个开关,初始时所有开关的状态为 \(0\).给定开关的目标状态 \(s_1,s_2,\cdots,s_n\).每 ...
- P3870 [TJOI2009]开关
思路 重题 代码 #include <iostream> #include <vector> #include <cstdio> #include <cstr ...
随机推荐
- PostgreSQL物化视图(materialized view)
1.创建视图 CREATE MATERIALIZED VIEW [ IF NOT EXISTS ] table_name [ (column_name [, ...] ) ] [ WITH ( sto ...
- CodeForces - 1017E :The Supersonic Rocket (几何+KMP,判定凸包是否同构)
After the war, the supersonic rocket became the most common public transportation. Each supersonic r ...
- 基于C#的数据库文件管理助手2018-09-02
数据库文件管理助手说明 目录 一. 数据库的文件导出2 1. web格式 2 2. winform格式 5 3. 二进制格式 5 二. 文件批量工具8 1. 文件批量改名GUID 8 2. 文件批量下 ...
- JS之事件监听
一 如果事件监听类似于如下写法,则最终只会执行最后一个事件监听,其他监听都会被覆盖掉. window.onload=funtion(){console.log(1);}; window.onload= ...
- 系统原生文件MD5值获取
windows: certutil -hashfile filePath MD5 certutil -hashfile filePath SHA1 Linux md5sum filePath s ...
- python中如何定义main方法
我们有时写的python模块需要自己测试, 简单方法就是定义main函数, 然后测试自己的模块接口. def main(): test_yourCode() if __name__ == & ...
- MySQL查询计划输出列的含义
"一:MySQL查询计划输出列的含义:1.id:每个被独立执行的操作的标识,表示对象被操作的顺序:id值越大,先被执行:如果相同,执行顺序从上到下.2.select_type:查询中每个se ...
- HDOJ5438(图的各个连通分量遍历)
#include<cstdio> #include<cstring> using namespace std; ; template<class T> struct ...
- Python:代码单元、代码点介绍
转于:https://www.cnblogs.com/runwulingsheng/p/5106078.html 博主:你是那天边突然划过的一道闪电 代码点:指编码表(比如Unicode)中某个字符的 ...
- openstack常见问题汇总
汇总下常见的问题以及解释下一些比较容易让人萌的参数配置等等 问题汇总1.使用纯文本模式进行复制粘贴,打死不要用word!!!可以解决绝大多数问题,如果你依然执迷不悟,那么就好自为之吧 2.创建路由器时 ...