Educational Codeforces Round 37 E. Connected Components?(图论)
2 seconds
256 megabytes
standard input
standard output
You are given an undirected graph consisting of n vertices and edges. Instead of giving you the edges that exist in the graph, we give you m unordered pairs (x, y) such that there is no edge between x and y, and if some pair of vertices is not listed in the input, then there is an edge between these vertices.
You have to find the number of connected components in the graph and the size of each component. A connected component is a set of vertices X such that for every two vertices from this set there exists at least one path in the graph connecting these vertices, but adding any other vertex to X violates this rule.
The first line contains two integers n and m (1 ≤ n ≤ 200000, ).
Then m lines follow, each containing a pair of integers x and y (1 ≤ x, y ≤ n, x ≠ y) denoting that there is no edge between x and y. Each pair is listed at most once; (x, y) and (y, x) are considered the same (so they are never listed in the same test). If some pair of vertices is not listed in the input, then there exists an edge between those vertices.
Firstly print k — the number of connected components in this graph.
Then print k integers — the sizes of components. You should output these integers in non-descending order.
5 5
1 2
3 4
3 2
4 2
2 5
2
1 4
题意:一个完全图去掉m条边,求剩下的图的联通块数和每个联通块的大小。
解析:我们先把所有的节点挂链,将当前第一个节点入队,遍历其在原图上相邻的点并做上标记,那么这时没有打上标记的点在补图上和当前节点一定有边相连因而一定在同一个联通块中,所以将没标记的点入队,并且在链表中除去,继续这个过程,直到队列为空时这个联通块就找出来了。把链接的点再删除标记,再取链表上还存在的点入队寻找一个新的联通块,直到删掉所有点为止,复杂度降为了O(n + m)。
代码:
#include "bits/stdc++.h"
#define db double
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define inf 0x3f3f3f3f
#define rep(i, x, y) for(int i=x;i<=y;i++)
const int N = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = mod - ;
const db eps = 1e-;
const db PI = acos(-1.0);
using namespace std;
int n,m,cnt;
int hea[N];
int a[N];
int pre[N],nex[N],ti[N];
int id=;
struct P{
int fr,to,nxt;
};
P e[N];
void add(int fr,int to){//前向星
e[cnt].fr=fr,e[cnt].to=to,e[cnt].nxt=hea[fr];
hea[fr]=cnt++;
}
void init()//初始化
{
memset(a,, sizeof(a));
memset(nex,, sizeof(nex));
memset(ti,, sizeof(ti));
memset(pre,, sizeof(pre));
memset(hea,-,sizeof(hea));
cnt=;
}
int main()
{
init();
ci(n),ci(m);
for(int i=;i<m;i++)
{
int x,y;
ci(x),ci(y);
add(x,y),add(y,x);
}
nex[]=;
for(int i=;i<=n;i++) pre[i]=i-,nex[i]=i+;//链表
pre[n+]=n;
int tot=;
while(nex[]!=n+)
{
queue<int>q;
int sum=;
q.push(nex[]);//链表当前第一个节点入队
nex[]=nex[nex[]];
pre[nex[]]=;
while(q.size())
{
id++;
int u=q.front();
q.pop();
for(int i=hea[u];i!=-;i=e[i].nxt){//标记与u点直接相连的点
int to=e[i].to;
ti[to]=id;
}
for(int i=nex[];i!=n+;i=nex[i]){//若点未被标记则在补图中直接相连,对此点继续同样的操作。
if(ti[i]!=id) nex[pre[i]]=nex[i],pre[nex[i]]=pre[i],q.push(i),sum++;
}
}
a[++tot]=sum;//联通块大小
}
sort(a+,a+tot+);
pi(tot);
for(int i=;i<=tot;i++) printf("%d%c",a[i],i==tot?'\n':' ');
return ;
}
Educational Codeforces Round 37 E. Connected Components?(图论)的更多相关文章
- Educational Codeforces Round 37
Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...
- Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements (思维,前缀和)
Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements time limit per test 1 se ...
- Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论
E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...
- Educational Codeforces Round 37 (Rated for Div. 2)
我的代码应该不会被hack,立个flag A. Water The Garden time limit per test 1 second memory limit per test 256 mega ...
- codeforces 920 EFG 题解合集 ( Educational Codeforces Round 37 )
E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Educational Codeforces Round 37 A B C D E F
A. water the garden Code #include <bits/stdc++.h> #define maxn 210 using namespace std; typede ...
- [Codeforces]Educational Codeforces Round 37 (Rated for Div. 2)
Water The Garden #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h ...
- Educational Codeforces Round 37 (Rated for Div. 2) 920E E. Connected Components?
题 OvO http://codeforces.com/contest/920/problem/E 解 模拟一遍…… 1.首先把所有数放到一个集合 s 中,并创建一个队列 que 2.然后每次随便取一 ...
- 【Educational Codeforces Round 37 E】Connected Components?
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] bfs. 用一个链表来记录哪些点已经确定在某一个联通快里了. 一开始每个点都能用. 然后从第一个点开始进行bfs. 然后对于它的所有 ...
随机推荐
- Spring课程 Spring入门篇 1-1Spring入门课程简介
课程链接: 课程简介: 1 什么是框架 2 Spring简介 3 IOC(配置,注解) 4 Bean(配置,注解) 5 AOP(配置,注解,AspectJ.API) SpringFrameWork 常 ...
- 粗看ES6之函数
标签: es6 javascript 箭头函数 ES6为了书写方便引入了函数的全新简写方式-箭头函数 <!DOCTYPE html> <html> <head> & ...
- 基于 MUI 构建一个具有 90 +页面的APP应用
前言 mui是一款接近原生App体验的前端框架,只需要掌握前端技术就可以开发APP应用,官方有提供功能比较全面的demo版本, 但在实战中总会遇到一些不可避免但坑,对于没有接触过mui的开发者,难免会 ...
- 解决 maven 项目中加入了 lombok 库后依然报错的问题
平时我们采用 maven 引入第三方库,可以方便的管理第三方 jar 包,然加入 lombok 后启动 eclipse 依然报错,这是由于 lombok 是通过反射在运行时自动生成 getter(). ...
- 常规项目用到的jar包之maven的pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- <Android 基础(九)> Ndk配置与Demo
介绍 The NDK is a toolset that allows you to implement parts of your app using native-code languages s ...
- PCB仿真软件与电磁场求解器的算法
1. 简介 目前商业化的PCB仿真软件主要有: Cadence公司的Sigrity.Ansys公司的SIwave/HFSS.CST公司的CST.Mentor公司的HyperLynx.Polor公司的S ...
- OMD开源监控软件
参考 Best Monitoring Solution - OMD (Nagios + Check_MK) 官网 mathias-kettner.com OMD labs.consol.de Conf ...
- Spark Job调度
Spark Job调度 1.概览 Spark有几种用于在计算之间调度资源的工具.首先,回想一下,如集群模式概述中所述,每个Spark应用程序(SparkContext的实例)都运行一组独立的execu ...
- 安卓NDK流程
定义wrap类,声明native函数,加载库 package com.ndk.hello; public class Classs { public native String say_hello() ...