2.2.1 向量
向量是用于存储数值型、字符型或逻辑型数据的一维数组。执行组合功能的函数c()可用来
创建向量。各类向量如下例所示:

a <-c(1, 2, 5, 3, 6, -2, 4)

b <- c("one", "two", "three")

c <-c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE)
这里,a是数值型向量,b是字符型向量,而c是逻辑型向量。①注意,单个向量中的数据必
须拥有相同的类型或模式(数值型、字符型或逻辑型)。同一向量中无法混杂不同模式的数据。

注意 标量是只含一个元素的向量,例如f <- 3、g <- "US"和h <- TRUE。它们用于保存
常量。

通过在方括号中给定元素所处位置的数值,我们可以访问向量中的元素。例如,a[c(2, 4)]
用于访问向量a中的第二个和第四个元素。更多示例如下:

a <- c(1, 2, 5, 3, 6, -2, 4)

a [3]

--[1] 5

a [c(1, 3, 5)]

--1 5 6

a [2:6]
——————————
① 由于R中内置了同名函数c(),最好不要在编码时使用c作为对象名,否则可能产生一些不易察觉的问题。——译者注
图灵社区会员 matrixvirus(matrixvirus@163.com) 专享 尊重版权
22 第2 章 创建数据集
最后一个语句中使用的冒号用于生成一个数值序列。例如,a <- c(2:6)等价于a <- c(2,
3, 4, 5, 6)。

2.2.2 矩阵
矩阵是一个二维数组,只是每个元素都拥有相同的模式(数值型、字符型或逻辑型)。可通
过函数matrix创建矩阵。一般使用格式为:

mymatrix <- matrix(vector, nrow=number_of_rows, ncol=number_of_columns,

byrow=logical_value, dimnames=list(char_vector_rownames, char_vector_colnames)

)
其中vector包含了矩阵的元素,nrow和ncol用以指定行和列的维数,dimnames包含了可选的、
以字符型向量表示的行名和列名。选项byrow则表明矩阵应当按行填充(byrow=TRUE)还是按
列填充(byrow=FALSE),默认情况下按列填充。代码清单2-1中的代码演示了matrix函数的
用法。

代码清单2-1 创建矩阵

> y <- matrix(1:20, nrow=5, ncol=4)
> y
     [,1] [,2] [,3] [,4]
[1,]    1    6   11   16
[2,]    2    7   12   17
[3,]    3    8   13   18
[4,]    4    9   14   19
[5,]    5   10   15   20
> cells <- c(1, 26, 24, 68)
> rnames <- c("R1", "R2")
> cnames <- c("C1", "C2")
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE, dimnames=list(rnames, cnames))
> mymatrix
   C1 C2
R1  1 26
R2 24 68
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=FALSE, dimnames=list(rnames, cnames))
> mymatrix
   C1 C2
R1  1 24
R2 26 68

我们首先创建了一个5×4的矩阵,接着创建了一个2×2的含列名标签的矩阵,并按行进行

填充,最后创建了一个2×2的矩阵并按列进行了填充。

我们可以使用下标和方括号来选择矩阵中的行、列或元素。X[i,]指矩阵X中的第i 行,X[,j]
指第j 列,X[i, j]指第i 行第j 个元素。选择多行或多列时,下标i 和j 可为数值型向量,如代码
清单2-2所示。
代码清单2-2 矩阵下标的使用

> x <- matrix(1:10, nrow=2)
> x
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    9
[2,]    2    4    6    8   10
> x[2,]
[1]  2  4  6  8 10
> x[,2]
[1] 3 4
> x[1,4]
[1] 7
> x[1, c(4,5)]
[1] 7 9

首先,我们创建了一个内容为数字1到10的2×5矩阵。默认情况下,矩阵按列填充。然后,
我们分别选择了第二行和第二列的元素。接着,又选择了第一行第四列的元素。最后选择了位于
第一行第四、第五列的元素。
矩阵都是二维的,和向量类似,矩阵中也仅能包含一种数据类型。当维度超过2时,不妨使
用数组(2.2.3节)。当有多种模式的数据时,不妨使用数据框(2.2.4节)。

2.2.3 数组
数组(array)与矩阵类似,但是维度可以大于2。数组可通过array函数创建,形式如下:
其中vector包含了数组中的数据,dimensions是一个数值型向量,给出了各个维度下标的最大
值,而dimnames是可选的、各维度名称标签的列表。代码清单2-3给出了一个创建三维
(2×3×4)数值型数组的示例。
代码清单2-3 创建一个数组

> dim1 <- c("A1", "A2")

> dim2 <- c("B1", "B2", "B3")

> dim3 <- c("C1", "C2", "C3", "C4")

> z <- array(1:24, c(2,3,4), dimnames=list(dim1, dim2, dim3))

> z

, , C1

B1 B2 B3

A1  1  3  5

A2  2  4  6

, , C2

B1 B2 B3

A1  7  9 11

A2  8 10 12

, , C3

B1 B2 B3

A1 13 15 17

A2 14 16 18

, , C4

B1 B2 B3

A1 19 21 23

A2 20 22 24

如你所见,数组是矩阵的一个自然推广。它们在编写新的统计方法时可能很有用。像矩阵一
样,数组中的数据也只能拥有一种模式。
从数组中选取元素的方式与矩阵相同。上例中,元素z[1,2,3]为15。
2.2.4 数据框
由于不同的列可以包含不同模式(数值型、字符型等)的数据,数据框的概念较矩阵来说更
为一般。它与你通常在SAS、SPSS和Stata中看到的数据集类似。数据框将是你在R中最常处理的
数据结构。
表2-1所示的病例数据集包含了数值型和字符型数据。由于数据有多种模式,无法将此数据
集放入一个矩阵。在这种情况下,使用数据框是最佳选择。
数据框可通过函数data.frame()创建:

mydata <- data.frame(col1, col2, col3, ...)
其中的列向量col1, col2, col3,… 可为任何类型(如字符型、数值型或逻辑型)。每一列的
名称可由函数names指定。代码清单2-4清晰地展示了相应用法。
代码清单2-4 创建一个数据框

> patientID <- c(1, 2, 3, 4)
> age <- c(25, 34, 28, 52)
> diabetes <- c("Type1", "Type2", "Type1", "Type1")
> status <- c("Poor", "Improved", "Excellent", "Poor")
> patientdata <- data.frame(patientID, age, diabetes, status)
> patientdata
  patientID age diabetes    status
1         1  25    Type1      Poor
2         2  34    Type2  Improved
3         3  28    Type1 Excellent
4         4  52    Type1      Poor

每一列数据的模式必须唯一,不过你却可以将多个模式的不同列放到一起组成数据框。由于
数据框与分析人员通常设想的数据集的形态较为接近,我们在讨论数据框时将交替使用术语列和
变量。
选取数据框中元素的方式有若干种。你可以使用前述(如矩阵中的)下标记号,亦可直接指
定列名。代码清单2-5使用之前创建的patientdata数据框演示了这些方式。

代码清单2-5 选取数据框中的元素

 > patientdata[1:2]
  patientID age
1         1  25
2         2  34
3         3  28
4         4  52
> patientdata[c("diabetes", "status")]
  diabetes    status
1    Type1      Poor
2    Type2  Improved
3    Type1 Excellent
4    Type1      Poor
> patientdata$age
[1] 25 34 28 52

第三个例子中的记号$是新出现的。它被用来选取一个给定数据框中的某个特定变量。例
如,如果你想生成糖尿病类型变量diabetes和病情变量status的列联表,使用以下代码即可:

> table(patientdata$diabetes, patientdata$status)
      
        Excellent Improved Poor
  Type1         1        0    2
  Type2         0        1    0

在每个变量名前都键入一次patientdata$可能会让人生厌,所以不妨走一些捷径。可以联
合使用函数attach()和detach()或单独使用函数with()来简化代码。
1. attach()、detach()和with()
函数attach()可将数据框添加到R的搜索路径中。R在遇到一个变量名以后,将检查搜索路
径中的数据框,以定位到这个变量。以第1章中的mtcars数据框为例,可以使用以下代码获取每
加仑行驶英里数(mpg)变量的描述性统计量,并分别绘制此变量与发动机排量(disp)和车身
重量(wt)的散点图:

summary(mtcars$mpg)

plot(mtcars$mpg, mtcars$disp)

plot(mtcars$mpg, mtcars$wt)

以上代码也可写成:

attach(mtcars)

summary(mpg)

plot(mpg, disp)

plot(mpg, wt)

detach(mtcars)

函数detach()将数据框从搜索路径中移除。值得注意的是,detach()并不会对数据框本身
做任何处理。这句是可以省略的,但其实它应当被例行地放入代码中,因为这是一个好的编程习
惯。(接下来的几章中,为了保持代码片段的简约和简短,我可能会不时地忽略这条良训。)
当名称相同的对象不止一个时,这种方法的局限性就很明显了。考虑以下代码:

> mpg <- c(25, 36, 47)

> attach(mtcars)

The following object(s) are masked _by_ '.GlobalEnv':    mpg

> plot(mpg, wt)

Error in xy.coords(x, y, xlabel, ylabel, log):

'x' and 'y' lengths differ

>mpg

[1] 25 36 47

这里,在数据框mtcars被绑定(attach)之前,我们的环境中已经有了一个名为mpg的对象。
在这种情况下,原始对象将取得优先权,这与你想要的结果有所出入。由于mpg中有3个元素而
disp中有32个元素,故plot语句出错。函数attach()和detach()最好在你分析一个单独的数
据框,并且不太可能有多个同名对象时使用。任何情况下,都要当心那些告知某个对象已被屏蔽
(masked)的警告。
除此之外,另一种方式是使用函数with()。你可以这样重写上例:
with(mtcars, {summary(mpg, disp, wt)

plot(mpg, disp)

plot(mpg, wt)

}

)

在这种情况下,大括号{}之间的语句都针对数据框mtcars执行,这样就无须担心名称冲突
了。如果仅有一条语句(例如summary(mpg)),那么大括号{}可以省略。
函数with()的局限性在于,赋值仅在此函数的括号内生效。考虑以下代码:

> with(mtcars, {stats <- summary(mpg)

stats

})

Min. lst Qu. Median Mean 3rd Qu. Max.

10.40  15.43  19.20  20.09  22.80  33.90

> stats

Error: objects 'stats' not found

如果你需要创建在with()结构以外存在的对象,使用特殊赋值符<<-替代标准赋值符(<-)
即可,它可将对象保存到with()之外的全局环境中。这一点可通过以下代码阐明:

> with(mtcars, {nokeepstats <- summary(mpg)

keepstats <<- summary(mpg)

}

)

> nokeepstats

Error: object 'nokeepstats' not found

> keepstats

Min.  lst  Qu.  Median    Mean  3rd  Qu.    Max.

10.40  15.43  19.20  20.09  22.80  33.90

相对于attach(),多数的R书籍更推荐使用with()。个人认为从根本上说,选择哪一个是
自己的偏好问题,并且应当根据你的目的和对于这两个函数含义的理解而定。本书中我们会交替
使用这两个函数。
2. 实例标识符
在病例数据中,病人编号(patientID)用于区分数据集中不同的个体。在R中,实例标识
符(case identifier)可通过数据框操作函数中的rowname选项指定。例如,语句:

patientdata <- data.frame(patientID, age, diabetes, status, row.names=patientID)

将patientID指定为R中标记各类打印输出和图形中实例名称所用的变量。

2.2.5 因子
如你所见,变量可归结为名义型、有序型或连续型变量。名义型变量是没有顺序之分的类别
变量。糖尿病类型Diabetes(Type1、Type2)是名义型变量的一例。即使在数据中Type1编码
为1而Type2编码为2,这也并不意味着二者是有序的。有序型变量表示一种顺序关系,而非数量
关系。病情Status(poor, improved, excellent)是顺序型变量的一个上佳示例。我们明白,
病情为poor(较差)病人的状态不如improved(病情好转)的病人,但并不知道相差多少。连续
型变量可以呈现为某个范围内的任意值,并同时表示了顺序和数量。年龄Age就是一个连续型变
量,它能够表示像14.5或22.8这样的值以及其间的其他任意值。很清楚,15岁的人比14岁的人年
长一岁。
类别(名义型)变量和有序类别(有序型)变量在R中称为因子(factor)。因子在R中非常重
要,因为它决定了数据的分析方式以及如何进行视觉呈现。你将在本书中通篇看到这样的例子。
函数factor()以一个整数向量的形式存储类别值,整数的取值范围是[1... k ](其中k 是名义
型变量中唯一值的个数),同时一个由字符串(原始值)组成的内部向量将映射到这些整数上。
举例来说,假设有向量:

diabetes <- c("Type1", "Type2", "Type1", "Type1")

语句diabetes <- factor(diabetes)将此向量存储为(1, 2, 1, 1),并在内部将其关联为
1=Type1和2=Type2(具体赋值根据字母顺序而定)。针对向量diabetes进行的任何分析都会将
其作为名义型变量对待,并自动选择适合这一测量尺度①的统计方法。
要表示有序型变量,需要为函数factor()指定参数ordered=TRUE。给定向量:

status <- c("Poor", "Improved", "Excellent", "Poor")

语句status <- factor(status, ordered=TRUE)会将向量编码为(3, 2, 1, 3),并在内部将这
些值关联为1=Excellent、2=Improved以及3=Poor。另外,针对此向量进行的任何分析都会将
——————————
① 这里的测量尺度是指定类尺度、定序尺度、定距尺度、定比尺度中的定类尺度。——译者注

其作为有序型变量对待,并自动选择合适的统计方法。
对于字符型向量,因子的水平默认依字母顺序创建。这对于因子status是有意义的,因为
“Excellent”、“Improved”、“Poor”的排序方式恰好与逻辑顺序相一致。如果“Poor”被编码为
“Ailing”,会有问题,因为顺序将为“Ailing”、“Excellent”、“Improved”。如果理想中的顺序是
“Poor”、“Improved”、“Excellent”,则会出现类似的问题。按默认的字母顺序排序的因子很少能
够让人满意。
你可以通过指定levels选项来覆盖默认排序。例如:

status <- factor(status, order=TRUE, levels=c("Poor", "Improved", "Excellent"))

各水平的赋值将为1=Poor、2=Improved、3=Excellent。请保证指定的水平与数据中的真实值
相匹配,因为任何在数据中出现而未在参数中列举的数据都将被设为缺失值。
代码清单2-6演示了普通因子和有序因子的不同是如何影响数据分析的。
代码清单2-6 因子的使用

> patientID <- c(1, 2, 3, 4)
> age <- c(25, 34, 28, 52)
> diabetes <- c("Type1", "Type2", "Type1", "Type1")
> status <- factor(status, order=TRUE)
> patientdata <- data.frame(patientID, age, diabetes, status)
> str(patientdata)
'data.frame':   4 obs. of  4 variables:
 $ patientID: num  1 2 3 4
 $ age      : num  25 34 28 52
 $ diabetes : Factor w/ 2 levels "Type1","Type2": 1 2 1 1
 $ status   : Ord.factor w/ 3 levels "Excellent"<"Improved"<..: 3 2 1 3
> summary(patientdata)
   patientID         age         diabetes       status
 Min.   :1.00   Min.   :25.00   Type1:3   Excellent:1 
 1st Qu.:1.75   1st Qu.:27.25   Type2:1   Improved :1 
 Median :2.50   Median :31.00             Poor     :2 
 Mean   :2.50   Mean   :34.75                         
 3rd Qu.:3.25   3rd Qu.:38.50                         
 Max.   :4.00   Max.   :52.00 
首先,以向量的形式输入了数据。然后,将diabetes和status分别指定为一个普通因子
和一个有序型因子。最后,将数据合并为一个数据框。函数str(object)可提供R中某个对象(本
例中为数据框)的信息。它清楚地显示diabetes是一个因子,而status是一个有序型因子,
以及此数据框在内部是如何进行编码的。注意,函数summary()会区别对待各个变量。它显示
了连续型变量age的最小值、最大值、均值和各四分位数,并显示了类别型变量diabetes和
status(各水平)的频数值。

2.2.6 列表
列表(list)是R的数据类型中最为复杂的一种。一般来说,列表就是一些对象(或成分,
component)的有序集合。列表允许你整合若干(可能无关的)对象到单个对象名下。例如,某个
列表中可能是若干向量、矩阵、数据框,甚至其他列表的组合。可以使用函数list()创建列表:
mylist <- list(object1, object2, ...)

其中的对象可以是目前为止讲到的任何结构。你还可以为列表中的对象命名:

mylist <- list(name1=object1, name2=object2, ...)

代码清单2-7展示了一个例子。
代码清单2-7 创建一个列表

> g <- "My First List"

> h <- c(25, 26, 18, 39)

> j <- matrix(1:10, nrow=5)

> k <- c("one", "two", "three")

> mylist <- list(title=g, ages=h, j, k)

> mylist $title [1] "My First List"

$ages [1] 25 26 18 39

[[3]]      [,1] [,2] [1,]    1    6 [2,]    2    7 [3,]    3    8 [4,]    4    9 [5,]    5   10

[[4]] [1] "one"   "two"   "three"

> mylist[[2]] [1] 25 26 18 39

> mylist[["ages"]] [1] 25 26 18 39

本例创建了一个列表,其中有四个成分:一个字符串、一个数值型向量、一个矩阵以及一个
字符型向量。可以组合任意多的对象,并将它们保存为一个列表。
你也可以通过在双重方括号中指明代表某个成分的数字或名称来访问列表中的元素。此例
中,mylist[[2]]和mylist[["ages"]]均指那个含有四个元素的向量。由于两个原因,列表
成为了R中的重要数据结构。首先,列表允许以一种简单的方式组织和重新调用不相干的信息。
其次,许多R函数的运行结果都是以列表的形式返回的。需要取出其中哪些成分由分析人员决定。
你将在后续各章发现许多返回列表的函数示例。

R数据类型的更多相关文章

  1. R 数据类型

    c()功能函数,产数据用 向量:一维数组,要求存放的数据类型一致 矩阵:二维数组,要求存放的数据类型一致,用通过matrix函数创建 数组:维度超过二维时建议用数组,用可araay函数创建 数据框:相 ...

  2. R学习----数据类型

    今天开始学习R语言了,没原因,就是想学 本人开发环境在ubuntu 16.04 LTS下 R命令提示符 终端直接输入R进入交互模式进行R学习.如下图 R脚本 # My first program in ...

  3. R(一): R基础知识

    R 是一门拥有统计分析及作图功能的免费软件,主要用于数学建模.统计计算.数据处理.可视化等方向.据 IEEE Spectrum发布的2016年编程语言前10位排名来看,R语言由2015年排名第6位上升 ...

  4. 《R语言入门与实践》第三章:R 对象

    在这一章,包含的内容有: R 的数据类型 属性 类(特殊的属性) Ruby 的数据结构 R 数据类型 R 可以识别六种类型的数据类型,分别是: double integer character log ...

  5. 社交网络分析的 R 基础:(三)向量、矩阵与列表

    在第二章介绍了 R 语言中的基本数据类型,本章会将其组装起来,构成特殊的数据结构,即向量.矩阵与列表.这些数据结构在社交网络分析中极其重要,本质上对图的分析,就是对邻接矩阵的分析,而矩阵又是由若干个向 ...

  6. 【Excel 4.0 函数】REGISTER

    REGISTER.ID 返回指定的 DLL 或 代码资源注册过的函数 ID.如果 DLL 或 代码资源没有注册,这个函数将会注册它们,并返回 注册ID. REGISTER.ID 可以用于工作表(不同于 ...

  7. (转载)SPARKR,对RDD操作的介绍

    原以为,用sparkR不能做map操作, 搜了搜发现可以. lapply等同于map, 但是不能操作spark RDD. spark2.0以后, sparkR增加了 dapply, dapplycol ...

  8. SPARKR,对RDD操作的介绍

    (转载)SPARKR,对RDD操作的介绍   原以为,用sparkR不能做map操作, 搜了搜发现可以. lapply等同于map, 但是不能操作spark RDD. spark2.0以后, spar ...

  9. SparkR初体验2.0

    突然有个想法,R只能处理百万级别的数据,如果R能运行在Spark上多好!搜了下发现13年SparkR这个项目就启动了,感谢美帝! 1.你肯定得先装个spark吧.看这:Spark本地模式与Spark ...

随机推荐

  1. oracle中创建dblink

    create database link to_group connect to UCR_GROUP identified by "UCR_GROUPQWER"using '(de ...

  2. LVS+Keepalived(DR模式)学习笔记

    1.简述 在互联网的中型项目中,单服务器往往已经无法满足业务本身的性能要求,这时候就会平行扩展,把负载分摊到数台服务器上(集群).一般实现集群有DNS轮询,LVS,nginx负载均衡. 集群主要目的包 ...

  3. 【JMeter4.0学习(三)】之SoapUI创建WebService接口模拟服务端以及JMeter对SOAP协议性能测试脚本开发

    目录: 创建WebService接口模拟服务端 下载SoapUI 新建MathUtil.wsdl文件 创建一个SOAP项目 接口模拟服务端配置以及启动 JMeter对SOAP协议性能测试脚本开发 [阐 ...

  4. 通俗的解释下音视频同步里pcr作用

    PCR同步在非硬件精确时钟源的情况还是谨慎使用,gstreamer里面采用PCR同步,但是发现好多ffmpeg转的片儿,或者是CP方的片源,pcr打得很粗糙的,老是有跳帧等现象.音视频同步,有三种方法 ...

  5. python 基础 9.10 删除数据

      #/usr/bin/python #-*- coding:utf-8 -*- #@Time   :2017/11/24 4:40 #@Auther :liuzhenchuan #@File   : ...

  6. Lifting the Stone(多边形重心)

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. (比赛)A - Simple String Problem

    A - Simple String Problem Time Limit:10000MS     Memory Limit:65536KB     64bit IO Format:%lld & ...

  8. 让Xcode支持高版本系统设备真机测试

    最新支持11.2 (15C107) Xcode只可以支持iPhone手机对应iOS系统以下的真机测试.一般想要支持最新的iPhone手机系统,有两个方法. 第一.就需要更新Xcode,这一个方法有一个 ...

  9. twig 截取字符串

    <p>{{content|slice(0,100)}}</p> slice()截取content变量值,从0到100

  10. JPA 多表分页查询

    业务场景:大学生毕业后统计毕业去向.学生实体和毕业去向实体一对一关系. 实体: @Entity @Data @Table(name = "t_s_student") public ...