[洛谷P3807]【模板】卢卡斯定理
题目大意:给你$n,m,p(p \in \rm prime)$,求出$C_{n + m}^m\bmod p(可能p\leqslant n,m)$
题解:卢卡斯$Lucas$定理,$C_B^A\bmod p$等于把$A,B$写成$p$进制时每一位的组合数相乘,设$A=a_n\times p^n+a_{n-1}\times p^{n-1}+\cdots+a_0$,$B=b_m\times p^m+b_{m-1}\times p^{m-1}+\cdots+b_0$,$C_B^A\bmod p=\prod\limits_{i=0}^{\min\{n,m\}}C_{b_i}^{a_i}$
卡点:无
C++ Code:
#include <cstdio>
#define maxn 100010
int Tim, n, m, mod;
long long fac[maxn], inv[maxn];
inline long long CC(long long a, long long b) {
if (a < b) return 0;
return fac[a] * inv[b] % mod * inv[a - b] % mod;
}
inline long long C(long long a, long long b) {
if (a < b) return 0;
if (a <= mod) return CC(a, b);
long long res = 1;
while (a && b && res) {
res = res * CC(a % mod, b % mod) % mod;
a /= mod, b /= mod;
}
return res;
}
int main() {
scanf("%d", &Tim);
fac[0] = fac[1] = inv[0] = inv[1] = 1;
while (Tim --> 0) {
scanf("%d%d%d", &n, &m, &mod);
for (long long i = 2; i <= mod; i++) fac[i] = fac[i - 1] * i % mod;
for (int i = 2; i <= mod; i++) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
for (int i = 2; i <= mod; i++) inv[i] = inv[i] * inv[i - 1] % mod;
printf("%lld\n", C(n + m, m));
}
return 0;
}
[洛谷P3807]【模板】卢卡斯定理的更多相关文章
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 洛谷 P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- jquery 操作ajax 相关方法
jQuery.get() 使用一个HTTP GET 请求从服务器加载数据. jQuery.get(url [,data] [,success(data,textStatus,jqXHR)] [dtaT ...
- 【主席树上二分】bzoj5361: [Lydsy1805月赛]对称数
随机化选讲例题 题目大意 小 Q 认为,偶数具有对称美,而奇数则没有.给定一棵 n 个点的树,任意两点之间有且仅有一条直接或间接路径.这些点编号依次为 1 到 n,其中编号为 i 的点上有一个正整数 ...
- 【杂题总汇】NOIP2013(洛谷P1967) 货车运输
[洛谷P1967] 货车运输 重做NOIP提高组ing... +传送门-洛谷P1967+ ◇ 题目(copy from 洛谷) 题目描述 A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道 ...
- Integer和int使用==比较的总结
public static void main(String[] args) { int i1 = 128; Integer i2 = 128; Integer i3 = new Integer(12 ...
- 基于centos7实现的ftp
前言 FTP(File transfer Protocl),文件传输协议,用于在网络上进行文件传输的一套标准协议,使用客户/服务器模式,属于网络传输协议的应用层.FTP服务运行在TCP/21和20端口 ...
- scrapy--json(喜马拉雅Fm)
已经开始听喜马拉雅Fm电台有2个月,听里面的故事,感觉能听到自己,特别是蕊希电台,始于声音,陷于故事,忠于总结.感谢喜马拉雅Fm陪我度过了这2个月,应该是太爱了,然后就开始对Fm下手了.QAQ 该博客 ...
- 右键git-bash不能使用
主要:右键git-bash不能使用 右键git-bash不能使用 今日想用git传写代码到仓库,突然发现几天没有却出问题了,右键出现了错误,虽然很快解决了,但还是可以记录下 情形: 右键存在但不能使用 ...
- POJ 1981 最大点覆盖问题(极角排序)
Circle and Points Time Limit: 5000MS Memory Limit: 30000K Total Submissions: 8346 Accepted: 2974 ...
- Spring Boot :Request请求处理流程
技术交流群:233513714
- Centos7 grep命令简介
grep 是一个最初用于 Unix 操作系统的命令行工具.在给出文件列表或标准输入后,grep会对匹配一个或多个正则表达式的文本进行搜索,并只输出匹配(或者不匹配)的行或文本. grep 可根据提供的 ...