原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html


题目描述

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

输入

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

输出

输出第一行包含一个整数,为小H可以得到的最大分数。

样例输入

7 3
4 1 3 4 0 2 3

样例输出

108


题解

斜率优化dp

首先可以证得分割的顺序对答案没有影响。

设连续的3部分之和分别为a、b、c,则先分割ab再分割bc的分数为a*(b+c)+b*c=a*b+a*c+b*c,先分割bc再分割ab的分数为(a+b)*c+a*b=a*b+a*c+b*c,它们完全相同。

这样我们就可以从左到右按顺序依次分割。

设f[i][p]表示前i个数分割p次的最大分数,那么有f[i][p]=f[j][p-1]+(sum[i]-sum[j])*sum[j]

这样时间复杂度为O(n^2*p),会TLE,需要优化。

将dp方程变形,得sum[j]*sum[j]-f[j][p-1]=sum[i]*sum[j]-f[i][p],

这样可以斜率优化来解决,此时y=sum[j]*sum[j]-f[j][p-1],k=sum[i],x=sum[j],均为正数(其实是故意这样移项的)。

然后要求的是f[i][p]的最大值,即-f[i][p]的最小值,所以应该维护一个上凸包。

另外需要开long long导致MLE,所以需要滚动数组。

#include <cstdio>
#define y(i , d) (sum[i] * sum[i] - f[i][d])
typedef long long ll;
ll sum[100010] , f[100010][2];
int q[100010];
int main()
{
int n , k , i , j , l , r , d = 0;
scanf("%d%d" , &n , &k);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &sum[i]) , sum[i] += sum[i - 1];
for(j = 1 ; j <= k ; j ++ )
{
l = r = 0 , d ^= 1;
for(i = 1 ; i <= n ; i ++ )
{
while(l < r && y(q[l + 1] , d ^ 1) - y(q[l] , d ^ 1) <= sum[i] * (sum[q[l + 1]] - sum[q[l]])) l ++ ;
f[i][d] = f[q[l]][d ^ 1] + (sum[i] - sum[q[l]]) * sum[q[l]];
while(l < r && (y(i , d ^ 1) - y(q[r] , d ^ 1)) * (sum[q[r]] - sum[q[r - 1]]) <= (y(q[r] , d ^ 1) - y(q[r - 1] , d ^ 1)) * (sum[i] - sum[q[r]])) r -- ;
q[++r] = i;
}
}
printf("%lld\n" , f[n][k & 1]);
return 0;
}

【bzoj3675】[Apio2014]序列分割 斜率优化dp的更多相关文章

  1. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  2. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  3. BZOJ3675: [Apio2014]序列分割(斜率优化)

    Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4186  Solved: 1629[Submit][Status][Discuss] Descript ...

  4. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  5. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  6. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  7. 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]

    序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...

  8. BZOJ 3675: 序列分割 (斜率优化dp)

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

  9. 2018.09.29 bzoj3675: [Apio2014]序列分割(斜率优化dp)

    传送门 斜率优化dp经典题目. 首先需要证明只要选择的K个断点是相同的,那么得到的答案也是相同的. 根据分治的思想,我们只需要证明有两个断点时成立,就能推出K个断点时成立. 我们设两个断点分成的三段连 ...

随机推荐

  1. python 多进程,多线程,协程

    在我们实际编码中,会遇到一些并行的任务,因为单个任务无法最大限度的使用计算机资源.使用并行任务,可以提高代码效率,最大限度的发挥计算机的性能.python实现并行任务可以有多进程,多线程,协程等方式. ...

  2. runit git-daemon-run 等错误

    正在处理用于 man-db (2.7.5-1) 的触发器 ... 正在设置 runit (2.1.2-3ubuntu1) ... start: 无法连接到 Upstart: Failed to con ...

  3. Wuss Weapp 一款高质量,组件齐全,高自定义的微信小程序 UI 组件库

    Wuss Weapp 一款高质量,组件齐全,高自定义的微信小程序 UI 组件库 文档 https://phonycode.github.io/wuss-weapp 扫码体验 使用微信扫一扫体验小程序组 ...

  4. django连接mysql数据库配置,出现no module named mysqldb报错

    作为一个菜鸟运维也是要有梦想的,万一学会了python走向人生巅峰了呢.好吧,都是瞎想,今天主要介绍下django配置,最近也开始摸索这个牛b框架了,当然大佬肯定不屑一顾,都是照顾照顾我们这些菜鸟初学 ...

  5. linux学习笔记二:三种网络配置

    本文引用自:https://www.linuxidc.com/Linux/2017-05/144370.htm [linux公社] VMware为我们提供了三种网络工作模式,它们分别是:Bridged ...

  6. vue数据绑定html

    html标签的纯文本显示/被当做html标签处理: 1)使用两个大括号时,假如字符串内容是html标签,那么不会被转义: 2)使用三个大括号时,字符串内的html标签会被直接转义 a.两个大括号: & ...

  7. FreeBSD--如何最有效率的安装软件

    Freebsd 下如何最有效率的安装软件 From <https://www.cnblogs.com/apexchu/p/4131821.html> FreeBSD的默认下载工具是fetc ...

  8. MySQL安装在Linux

    利用Alt+p工具将下载好的Linux版本的mysql软件加载到根目录. 1. 将下载好的MySQL文件MySQL-5.6.41-1.el6.i686.rpm-bundle.tar放到 根目录下的mk ...

  9. 数据分析处理库Pandas——merge操作

    有一列列名相同值也相同 有两列列名相同值也相同 按其中一列合并 按两列合并 有一列列名相同值也相同,有一列列名相同值不相同,按两列合并 列名相同值不相同的行删掉 保留所有行 保留所有行并显示合并后该值 ...

  10. python -- configparse读取配置文件

    在开发过程中,有的时候需要将一些参数写入到配置文件中,这样在改动一些相关信息时,可以直接在配置文件中进行修改. 而在python中,可以通过内置模块configparse对标准的配置文件进行读取. 配 ...