题目

给出一个循环for(int i=A;i!=B;i+=C) 在mod (1<<k) 下是否可以退出循环

是,输出时间,否输出FORVEER


题解:

题意可以变换成 A+Cx=B (mod 1<<k)

去掉mod之后变成 Cx=(B-A)+(1<<K)*y 是否有整数解

令 a=C,b=(1<<K) c=B-A

转化为ax+by=c的问题

exgcd即可

注意开longlong 要写1LL<<k 输出x最小正整数

 #include<cstdio>
#include<algorithm>
#include<cstring>
typedef long long ll;
using namespace std;
ll A,B,C,x,y,k,a,b,g,c;
ll exGcd(ll a,ll b,ll &x,ll &y)
{
if (b==) return x=,y=,a;
ll r=exGcd(b,a%b,y,x);
y-=(a/b)*x;
return r;
}
int main()
{
while (scanf("%lld%lld%lld%lld",&A,&B,&C,&k) && A+B+C+k!=)
{ a=C;
b=(1LL<<k);
c=B-A;
g=exGcd(a,b,x,y);
if (c%g!=) puts("FOREVER");
else
{
b/=g;
c/=g;
x=(x%b*c%b+b)%b;
printf("%lld\n",x);
} }
return ;
}

POJ 2115 C-Looooops | exgcd的更多相关文章

  1. poj 2115 C Looooops——exgcd模板

    题目:http://poj.org/problem?id=2115 exgcd裸题.注意最后各种%b.注意打出正确的exgcd板子.就是别忘了/=g. #include<iostream> ...

  2. Poj 2115 C Looooops(exgcd变式)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...

  3. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

  4. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  5. POJ 2115 C Looooops(Exgcd)

    [题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, ...

  6. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  7. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

  8. POJ 2115 C Looooops

    扩展GCD...一定要(1L<<k),不然k=31是会出错的 ....                        C Looooops Time Limit: 1000MS   Mem ...

  9. poj 2115 C Looooops(扩展gcd)

    题目链接 这个题犯了两个小错误,感觉没错,结果怒交了20+遍,各种改看别人题解,感觉思路没有错误,就是wa. 后来看diccuss和自己查错,发现自己的ecgcd里的x*(a/b)写成了x*a/b.还 ...

  10. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

随机推荐

  1. 【动态规划】cf1034C. Region Separation

    质因数分解套路的复杂度分析的动态规划 题目大意 有一颗$n$个节点有点权的树,初始整棵树为$1$号区域,要求满足下列规则: 除非$i$是最后一个等级,否则每一个$i$级区域都要被分成至少两个$i+1$ ...

  2. REST Adapter实现SAP PI中的增强XML/JSON格式转换(转载)

    SAP标准的REST adapter有着XML/JSON转换的功能,它很有用,因为一方面SAP PI/PO内部以XML格式处理数据,而另一方面,在处理REST架构风格的时候,JSON才是事实上的格式. ...

  3. Guava Cache 工具类 [ GuavaCacheUtil ]

    pom.xml <dependency> <groupId>com.google.guava</groupId> <artifactId>guava&l ...

  4. Python面向对象--高级(一)

    ## 属性的类型 - 属性可分为类属性和实例属性 - 实例属性可以通过在类中使用self定义,或者直接在类外部使用实例变量定义 class Person(object): def __init__(s ...

  5. PHP 面向对象 static 和 self 的区别

    一.前言 php是世界上最好的语言 php从面向过程走到现在成熟的面向对象体系, 在php面向对象中,静态变量的调用我们可以用这两个self::method和 static::method, 但是很多 ...

  6. linux系统集群之高可用(一)HA

    HA(High aviliable)高可用 高可用的需求 在很多公司里面,都会存在着一些不愿被中断的业务,但是由于硬件故障,软件故障,人为因素等各种因素,往往会不经意的造成我们重要的业务中断,因此高可 ...

  7. Win7更换锁屏和开机画面

    技术交流群:233513714 每次开机被Windows千年不变的开机画面和锁屏画面丑到的小伙伴们可以看过来,通过简单的几步就可以改掉系统默认的开机画面. 1.首先Windows+r键输入regedi ...

  8. web.py上传文件并解压

    有个需求是从php端上传zip文件到python端并且解压到指定目录,以下是解决方法 1.python端,使用的web.py def POST(self): post_data = web.input ...

  9. laravel5.5中间件

    目录 1. 中间件知识 1. artisan 命令 2. 文件内容 3. 前置中间件和后置中间件 4. 使用中间件 2. 控制器中间件 1. 中间件知识 1. artisan 命令 php artis ...

  10. 使用Windows SFC和DISM工具来解决服务器OS问题

    TechTarget中国原创] 随着使用时间的越来越多,Windows服务器安装的系统文件可能会被损坏或损毁.管理员一般可以通过系统自带的System File Checker (SFC) 或者更健壮 ...