题目

给出一个循环for(int i=A;i!=B;i+=C) 在mod (1<<k) 下是否可以退出循环

是,输出时间,否输出FORVEER


题解:

题意可以变换成 A+Cx=B (mod 1<<k)

去掉mod之后变成 Cx=(B-A)+(1<<K)*y 是否有整数解

令 a=C,b=(1<<K) c=B-A

转化为ax+by=c的问题

exgcd即可

注意开longlong 要写1LL<<k 输出x最小正整数

 #include<cstdio>
#include<algorithm>
#include<cstring>
typedef long long ll;
using namespace std;
ll A,B,C,x,y,k,a,b,g,c;
ll exGcd(ll a,ll b,ll &x,ll &y)
{
if (b==) return x=,y=,a;
ll r=exGcd(b,a%b,y,x);
y-=(a/b)*x;
return r;
}
int main()
{
while (scanf("%lld%lld%lld%lld",&A,&B,&C,&k) && A+B+C+k!=)
{ a=C;
b=(1LL<<k);
c=B-A;
g=exGcd(a,b,x,y);
if (c%g!=) puts("FOREVER");
else
{
b/=g;
c/=g;
x=(x%b*c%b+b)%b;
printf("%lld\n",x);
} }
return ;
}

POJ 2115 C-Looooops | exgcd的更多相关文章

  1. poj 2115 C Looooops——exgcd模板

    题目:http://poj.org/problem?id=2115 exgcd裸题.注意最后各种%b.注意打出正确的exgcd板子.就是别忘了/=g. #include<iostream> ...

  2. Poj 2115 C Looooops(exgcd变式)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...

  3. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

  4. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  5. POJ 2115 C Looooops(Exgcd)

    [题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, ...

  6. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  7. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

  8. POJ 2115 C Looooops

    扩展GCD...一定要(1L<<k),不然k=31是会出错的 ....                        C Looooops Time Limit: 1000MS   Mem ...

  9. poj 2115 C Looooops(扩展gcd)

    题目链接 这个题犯了两个小错误,感觉没错,结果怒交了20+遍,各种改看别人题解,感觉思路没有错误,就是wa. 后来看diccuss和自己查错,发现自己的ecgcd里的x*(a/b)写成了x*a/b.还 ...

  10. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

随机推荐

  1. ES6初识-(冲突)数据结构

    Set的用法 元素不能重复--唯一性 WeakSet key值只能是对象 没有clear属性 Map let map=new Map([['a',123],['b',456]]);; WeakMap ...

  2. REST Adapter实现SAP PI中的增强XML/JSON格式转换(转载)

    SAP标准的REST adapter有着XML/JSON转换的功能,它很有用,因为一方面SAP PI/PO内部以XML格式处理数据,而另一方面,在处理REST架构风格的时候,JSON才是事实上的格式. ...

  3. Win10下安装zookeeper

    Win10下安装zookeeper 注册中心zookeeper的安装 0.去Apache官网下载zookeeper http://zookeeper.apache.org/ 2.找到解压路径的conf ...

  4. PHP成随机字符串

    生成随机字符串 /** * 随机字符串 * @param int $len * @return string */ function randomStr($len = 32) { $chars = & ...

  5. redis源代码结构解析

    看了黄建宏老师的<Redis设计与实现>,对redis的部分实现有了一个简明的认识: 之前面试的时候被问到了这部分的内容,没有关注,好在还有时间,就把Redis的源码看了一遍. Redis ...

  6. 关于 PHP 程序员技术职业生涯规划

    原文地址:http://rango.swoole.com/archives/570 看到很多 PHP 程序员职业规划的文章,都是直接上来就提 Linux.PHP.MySQL.Nginx.Redis.M ...

  7. Linux编译移植Qt5的环境_Xillinx的ZYNQ平台

    Linux编译Qt环境 2017年的十一假期,足不出户,一个人在教研室里面搞Qt的移植.我手里面有Samsung的CortexA8,Samsung的 CortexA53还有Ti的Sitara系列的AM ...

  8. Codeforces Round #438 C - Qualification Rounds 思维

    C. Qualification Rounds time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. 笔记-python-functool-@wraps

    笔记-python-functool-@wraps 1.      wraps 经常看到@wraps装饰器,查阅文档学习一下 在了解它之前,先了解一下partial和updata_wrapper这两个 ...

  10. 笔记-python-lib-chardet

    笔记-python-lib-chardet 1.      chardet chardet是一个非常优秀的编码识别模块, 是python的第三方库,需要下载和安装. 文档地址:https://pypi ...