BZOJ3597 [Scoi2014]方伯伯运椰子 【二分 + 判负环】
题目链接
题解
orz一眼过去一点思路都没有
既然是流量网络,就要借鉴网络流的思想了
我们先处理一下那个比值,显然是一个分数规划,我们二分一个\(\lambda = \frac{X - Y}{k}\)
如果\(\lambda\)成立,则
\]
即
\]
所以我们只需要判断是否存在一种方案使得这个式子成立
依照网络流的思想,撤回流量就往反向边走,扩展流量往正向边
对于边\((u,v)\),撤回流量产生的代价就是\(\lambda + \Delta fee = \lambda + (ai - di)\)
扩展产生的代价就是\(\lambda + \Delta fee = \lambda + (bi + di)\)
为保证流量守恒,我们调整边走过的路径必须成环
如果我们建出的图中存在权值为负的环,就找到了一条满足上式的调整方案
使用\(spfa\)判负环即可
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define eps 1e-4
using namespace std;
const int maxn = 5005,maxm = 10005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne;
struct EDGE{int to,nxt; double w;}ed[maxm];
inline void build(int u,int v,double w){
ed[++ne] = (EDGE){v,h[u],w}; h[u] = ne;
}
int n,m,vis[maxn];
double d[maxn];
bool spfa(int u,double lam){
vis[u] = true;
Redge(u){
to = ed[k].to;
if (d[to] > d[u] + ed[k].w + lam){
d[to] = d[u] + ed[k].w + lam;
if (vis[to]) return true;
if (spfa(to,lam)) return true;
}
}
vis[u] = false;
return false;
}
bool check(double lam){
cls(vis); cls(d);
for (int i = 1; i <= n; i++) if (spfa(i,lam)) return true;
return false;
}
int main(){
n = read() + 2; m = read();
int u,v,a,b,c,d;
for (int i = 1; i <= m; i++){
u = read(); v = read(); a = read(); b = read(); c = read(); d = read();
if (u == n - 1 || v == n - 1) continue;
if (c) build(v,u,a - d);
build(u,v,d + b);
}
double l = 0,r = 1000000000,mid;
while (r - l > eps){
mid = (l + r) / 2.0;
if (check(mid)) l = mid;
else r = mid;
}
printf("%.2lf",(l + r) / 2.0);
return 0;
}
BZOJ3597 [Scoi2014]方伯伯运椰子 【二分 + 判负环】的更多相关文章
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)
即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...
- [bzoj3597][scoi2014]方伯伯运椰子——分数规划,负环
题解 目标就是 \[Maximize\ \lambda = \frac{X-Y}{k}\] 按照分数规划的一般规律, 构造: \[g(\lambda) = \lambda k + Y - X\] 由于 ...
- 2019.03.28 bzoj3597: [Scoi2014]方伯伯运椰子(01分数规划)
传送门 题意咕咕咕有点麻烦不想写 思路: 考虑加了多少一定要压缩多少,这样可以改造边. 于是可以通过分数规划+spfaspfaspfa解决. 代码: #include<bits/stdc++.h ...
- Bzoj3597: [Scoi2014]方伯伯运椰子
题面 传送门 Sol 消圈定理:如果一个费用流网络的残量网络有负环,那么这个费用流不优 于是这个题就可以建出残量网络,然后分数规划跑负环了 # include <bits/stdc++.h> ...
- 【BZOJ3597】方伯伯运椰子(分数规划,网络流)
[BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...
- 3597: [Scoi2014]方伯伯运椰子[分数规划]
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MB Submit: 404 Solved: 249 [Submit][Sta ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 144 Solved: 78[Submit][Status ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
随机推荐
- C/C++程序基础 (十一)标准模板库
标准模板库 标准模板库在标准函数库的定位 迭代器(类似指针)保证算法(常用算法)和容器(数据结构)的结合. vector的实现 底层实现是动态数组,所以支持随机访问. 内部是动态数组,随着insert ...
- Percona-Tookit工具包之pt-stalk
Preface We have a lot of methods to diagnose problems in our system such as strace,pstack,gs ...
- keepalived实现nginx的高可用
1.使用yum安装keepalived yum install keepalived -y 2.修改配置文件keepalived.conf 主服务器配置文件 global_defs { router_ ...
- python中字符串编码方式小结
Python2中字符串的类型有两种:str和unicode,其中unicode是统一编码方式,它使得字符跟二进制是一一对应的,因此所有其他编码的encode都从unicode开始,而其他编码方式按照相 ...
- Centos6.8安装python3.6
1.目的简介: centos默认使用的是python 2.6.6,而python的2.x 和 3.x 是两个不兼容的版本,到目前的python发展,都已经过渡到了python 3.x,所以需要手动将p ...
- Linux(CentOS6.5 x64)下版本安装及升级kangle+EasyPanel
说明:(easypanel集成了kangle web 服务器和mysql,仅支持centos 5和centos 6) .执行下面的命令即可,安装程序将自动安装或者升级: yum -y install ...
- attention发展历史及其相应论文
这个论文讲述了attention机制的发展历史以及在发展过程的变体-注意力机制(Attention Mechanism)在自然语言处理中的应用 上面那个论文提到attention在CNN中应用,有一个 ...
- 学习python第十五天,面向对象
Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的. 面向对象技术简介 类(Class): 用来描述具有相同的属性和方法的对象的集合.它定义了该集 ...
- python datetime offset-aware与offset-navie相互转换
python datetime offset-aware与offset-navie相互转换 2016年11月13日 16:20:43 阅读数:2393 有时,我们使用python 的datetime模 ...
- Postman-进阶(2)
Postman-进阶(2) Postman-简单使用 Postman-进阶使用 Postman-CI集成Jenkins 管理请求 保存请求-添加“打开百度首页请求” 设置请求方式为Get,地址为www ...