BZOJ3597 [Scoi2014]方伯伯运椰子 【二分 + 判负环】
题目链接
题解
orz一眼过去一点思路都没有
既然是流量网络,就要借鉴网络流的思想了
我们先处理一下那个比值,显然是一个分数规划,我们二分一个\(\lambda = \frac{X - Y}{k}\)
如果\(\lambda\)成立,则
\]
即
\]
所以我们只需要判断是否存在一种方案使得这个式子成立
依照网络流的思想,撤回流量就往反向边走,扩展流量往正向边
对于边\((u,v)\),撤回流量产生的代价就是\(\lambda + \Delta fee = \lambda + (ai - di)\)
扩展产生的代价就是\(\lambda + \Delta fee = \lambda + (bi + di)\)
为保证流量守恒,我们调整边走过的路径必须成环
如果我们建出的图中存在权值为负的环,就找到了一条满足上式的调整方案
使用\(spfa\)判负环即可
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define eps 1e-4
using namespace std;
const int maxn = 5005,maxm = 10005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne;
struct EDGE{int to,nxt; double w;}ed[maxm];
inline void build(int u,int v,double w){
ed[++ne] = (EDGE){v,h[u],w}; h[u] = ne;
}
int n,m,vis[maxn];
double d[maxn];
bool spfa(int u,double lam){
vis[u] = true;
Redge(u){
to = ed[k].to;
if (d[to] > d[u] + ed[k].w + lam){
d[to] = d[u] + ed[k].w + lam;
if (vis[to]) return true;
if (spfa(to,lam)) return true;
}
}
vis[u] = false;
return false;
}
bool check(double lam){
cls(vis); cls(d);
for (int i = 1; i <= n; i++) if (spfa(i,lam)) return true;
return false;
}
int main(){
n = read() + 2; m = read();
int u,v,a,b,c,d;
for (int i = 1; i <= m; i++){
u = read(); v = read(); a = read(); b = read(); c = read(); d = read();
if (u == n - 1 || v == n - 1) continue;
if (c) build(v,u,a - d);
build(u,v,d + b);
}
double l = 0,r = 1000000000,mid;
while (r - l > eps){
mid = (l + r) / 2.0;
if (check(mid)) l = mid;
else r = mid;
}
printf("%.2lf",(l + r) / 2.0);
return 0;
}
BZOJ3597 [Scoi2014]方伯伯运椰子 【二分 + 判负环】的更多相关文章
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)
即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...
- [bzoj3597][scoi2014]方伯伯运椰子——分数规划,负环
题解 目标就是 \[Maximize\ \lambda = \frac{X-Y}{k}\] 按照分数规划的一般规律, 构造: \[g(\lambda) = \lambda k + Y - X\] 由于 ...
- 2019.03.28 bzoj3597: [Scoi2014]方伯伯运椰子(01分数规划)
传送门 题意咕咕咕有点麻烦不想写 思路: 考虑加了多少一定要压缩多少,这样可以改造边. 于是可以通过分数规划+spfaspfaspfa解决. 代码: #include<bits/stdc++.h ...
- Bzoj3597: [Scoi2014]方伯伯运椰子
题面 传送门 Sol 消圈定理:如果一个费用流网络的残量网络有负环,那么这个费用流不优 于是这个题就可以建出残量网络,然后分数规划跑负环了 # include <bits/stdc++.h> ...
- 【BZOJ3597】方伯伯运椰子(分数规划,网络流)
[BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...
- 3597: [Scoi2014]方伯伯运椰子[分数规划]
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MB Submit: 404 Solved: 249 [Submit][Sta ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 144 Solved: 78[Submit][Status ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
随机推荐
- ECMAscript6(ES6)新特性语法总结(一)
ES6/ES2015,,在ES5的基础上扩展了很多新的功能,在使用的时候要慎重,因为有一部分js代码在部分浏览器是不兼容的,但是所有写在服务器端的代码基本上都支持ES6的写法. 新特性: 一.开启严格 ...
- Struts2基础入门
Struts2基础入门 创建一个web工程 0)导包并且创建一个核心配置文件 <?xml version="1.0" encoding="UTF-8"?& ...
- java的八种基本数据类型
据说表格的方式一目了然 一. java数据类型的取值范围如下: 注意:long型后如果不加 L 则默认为int型,float型如果不加 F 则默认为double型: 注意!注意!注意 ...
- mysql 创建用户、授权、修改密码
以下操作都要在mysql所在机器操作 一.创建用户 CREATE USER 'dog'@'localhost' IDENTIFIED BY '123456'; 或 insert into mysql. ...
- JQuery制作网页—— 第三章 JavaScript操作DOM对象
1. DOM:Document Object Model(文档对象模型): DOM操作: ●DOM是Document Object Model的缩 ...
- TFS 2015服务端安装与客户端签入项目步骤
一.参考如下3篇文章搭建TFS2015环境 1.参考文章如下: TFS 2015(Visual Studio Team Foundation Server)的下载和安装http://www.cnblo ...
- Google Compute Engine VM自动调节
现象:利用google云搭建VM服务,在搭建实例组有一个"自动调节"功能,可以自动添加/删除MV,当自动添加VM时可能新添加的VM就是一个新的VM,你部署的代码或者环境都没了.现在 ...
- Linux编译移植Qt5的环境_Xillinx的ZYNQ平台
Linux编译Qt环境 2017年的十一假期,足不出户,一个人在教研室里面搞Qt的移植.我手里面有Samsung的CortexA8,Samsung的 CortexA53还有Ti的Sitara系列的AM ...
- iOS-UICollectionViewController 介绍
废话不多说,列几个列子 (几种情况下的做法): 情景一: 介绍:1. 在UIViewController 上加 UICollectionView (用代码 创建 UICollectionView). ...
- caioj:1348: [NOIP普及组2012]质因数分解 C++
题目描述 已知正整数n是两个不同的质数的乘积,试求出两者中较大的那个质数. 输入样例 21 输出样例 7 输入 输入只有一行,包含一个正整数n. 输出 输出只有一行,包含一个正整数p,即较大的那个质数 ...