题目描述

如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:

给出n, d,编程数出深度为d的n元树数目。

输入输出格式

输入格式:

仅包含两个整数n, d(0<n<=32, 0<=d<=16)。输入数据保证你不需要考虑某一层多于1024个节点的树(即nd<=1024)。提示:答案保证不超过200位十进制数。

输出格式:

仅包含一个数,即深度为d的n元树的数目。

输入输出样例

输入样例#1:

2 2

输出样例#1:

3

输入样例#2:

2 3

输出样例#2:

21

输入样例#3:

3 5

输出样例#3:

58871587162270592645034001

f[i] 为深度不小于i的树的总个数

先算出较浅深度的树的个数,然后每次^n+1(补一个根)

最后要深度为d的只需f[d]-f[d-1]即为答案

code:

//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std; inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
} inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
} const int maxn=10010;
const int INF=0x3f3f3f3f;
int n,d; struct bign{
int d[maxn], len; void clean() { while(len > 1 && !d[len-1]) len--; } bign() { memset(d, 0, sizeof(d)); len = 1; }
bign(int num) { *this = num; }
bign(char* num) { *this = num; }
bign operator = (const char* num){
memset(d, 0, sizeof(d)); len = strlen(num);
for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0';
clean();
return *this;
}
bign operator = (int num){
char s[2000]; sprintf(s, "%d", num);
*this = s;
return *this;
} bign operator + (const bign& b){
bign c = *this; int i;
for (i = 0; i < b.len; i++){
c.d[i] += b.d[i];
if (c.d[i] > 9) c.d[i]%=10, c.d[i+1]++;
}
while (c.d[i] > 9) c.d[i++]%=10, c.d[i]++;
c.len = max(len, b.len);
if (c.d[i] && c.len <= i) c.len = i+1;
return c;
}
bign operator - (const bign& b){
bign c = *this; int i;
for (i = 0; i < b.len; i++){
c.d[i] -= b.d[i];
if (c.d[i] < 0) c.d[i]+=10, c.d[i+1]--;
}
while (c.d[i] < 0) c.d[i++]+=10, c.d[i]--;
c.clean();
return c;
}
bign operator * (const bign& b)const{
int i, j; bign c; c.len = len + b.len;
for(j = 0; j < b.len; j++) for(i = 0; i < len; i++)
c.d[i+j] += d[i] * b.d[j];
for(i = 0; i < c.len-1; i++)
c.d[i+1] += c.d[i]/10, c.d[i] %= 10;
c.clean();
return c;
}
bign operator / (const bign& b){
int i, j;
bign c = *this, a = 0;
for (i = len - 1; i >= 0; i--)
{
a = a*10 + d[i];
for (j = 0; j < 10; j++) if (a < b*(j+1)) break;
c.d[i] = j;
a = a - b*j;
}
c.clean();
return c;
}
bign operator % (const bign& b){
int i, j;
bign a = 0;
for (i = len - 1; i >= 0; i--)
{
a = a*10 + d[i];
for (j = 0; j < 10; j++) if (a < b*(j+1)) break;
a = a - b*j;
}
return a;
}
bign operator += (const bign& b){
*this = *this + b;
return *this;
} bool operator <(const bign& b) const{
if(len != b.len) return len < b.len;
for(int i = len-1; i >= 0; i--)
if(d[i] != b.d[i]) return d[i] < b.d[i];
return false;
}
bool operator >(const bign& b) const{return b < *this;}
bool operator<=(const bign& b) const{return !(b < *this);}
bool operator>=(const bign& b) const{return !(*this < b);}
bool operator!=(const bign& b) const{return b < *this || *this < b;}
bool operator==(const bign& b) const{return !(b < *this) && !(b > *this);} string str() const{
char s[maxn]={};
for(int i = 0; i < len; i++) s[len-1-i] = d[i]+'0';
return s;
}
};
istream& operator >> (istream& in, bign& x)
{
string s;
in >> s;
x = s.c_str();
return in;
} ostream& operator << (ostream& out, const bign& x)
{
out << x.str();
return out;
} bign f[40];
int main() {
n=rd();d=rd();
if(d==1&&n==1) return cout<<0,0;
if(!d) return cout<<1,0;
f[1]=1;
F(i,1,d) {
bign tp=1;
F(j,1,n) tp=tp*f[i-1];
f[i]=f[i]+tp+1;
}
return cout<<f[d]-f[d-1],0;
}

[luogu4259 SCOI2003] 严格N元树 (高精 计数dp)的更多相关文章

  1. bzoj1089 [SCOI2003]严格n元树(dp+高精)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1899  Solved: 954[Submit][Statu ...

  2. SCOI2003 严格N元树

    SCOI2003 严格N元树 Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的 ...

  3. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  4. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

  5. BZOJ1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status ...

  6. 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)

    [BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...

  7. BZOJ1089 [SCOI2003]严格n元树 【dp + 高精】

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  8. bzoj 1089: [SCOI2003]严格n元树【dp+高精】

    设f[i]为深度为i的n元树数目,s为f的前缀和 s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种 写个高精就行了,好久没写WA了好几次-- #incl ...

  9. P4295 [SCOI2003]严格N元树 DP

    思路:DP 提交:\(5\)次 错因:2次高精写错(我太菜了),2次写错特判 题解: 设\(f[i]\)表示深度\(\leq i\)的严格\(n\)元树的数目,有 \[f[i]=pow(f[i-1], ...

随机推荐

  1. 探索Python的多态是怎么实现的

    多态是指通过基类的指针或者引用,在运行时动态调用实际绑定对象函数的行为. 对于其他如C++的语言,多态是通过在基类的函数前加上virtual关键字,在派生类中重写该函数,运行时将会根据对象的实际类型来 ...

  2. Java 接口技术 Interface

    一.什么是接口技术(Interface): //举例中Comparable是一个接口,Employee是一个类 1.接口不是类,而是对类的一组描述,并不给出每个类的具体实现. 2.一个类可以实现多个接 ...

  3. Spring学习总结(18)——Spring整合Mysql数据库一主多从、多主多从配置

    一.新建jdbc.properties配置文件 master.jdbc.driverClassName=com.mysql.jdbc.Driver master.jdbc.url=jdbc:mysql ...

  4. MSMQ如何设置事务特性

  5. opencv3.2+opencv_contrib+cmake

    转自原文 opencv3.2+opencv_contrib+cmake 心得体会 初学OpenCV发现opencv3.2(下载链接在附录)是没有xfeatures2d等模块的.第三方库opencv_c ...

  6. T4系列文章之2:T4工具简介、调试以及T4运行原理

    一.前言 经过第一篇,我想大家现在对T4有了基本的印象,应该对T4有了一个大致的了解吧.现在,我们接着来讲一下T4的工具,然后下一篇我就开始T4的用法了.各位客官,就等了. 二.工具介绍 2.1 上图 ...

  7. Flume 读取实时更新的日志文件

    http://blog.csdn.net/bright60/article/details/50728306 我用了第一种方法. 1. 日志文件每天roate一个新文件 a)  方案一 There i ...

  8. poj 2683 Ohgas&#39; Fortune 利率计算

    水题. 代码: //poj 2683 //sep9 #include <iostream> using namespace std; int main() { int cases; sca ...

  9. DB-MySQL:MySQL 正则表达式

    ylbtech-DB-MySQL:MySQL 正则表达式 1.返回顶部 1. MySQL 正则表达式 在前面的章节我们已经了解到MySQL可以通过 LIKE ...% 来进行模糊匹配. MySQL 同 ...

  10. Linux,Docker,Jenkins No such file or directory

    你们先休息下,我先哭哭! 今天在做交接项目的bug修改的时候,在创建文件的时候报错 No such file or directory 然后跟着路径去linux中查看了该路径,但确实存在,并且权限都是 ...