Description

John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting beautiful places. To save money, John must determine the shortest closed tour that connects his destinations. Each destination is represented by a point
in the plane pi = < xi,yi >. John uses the following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost point, and then he goes strictly right back to the starting point. It is known that the points have distinct
x-coordinates. 

Write a program that, given a set of n points in the plane, computes the shortest closed tour that connects the points according to John's strategy.

Input

The program input is from a text file. Each data set in the file stands for a particular set of points. For each set of points the data set contains the number of points, and the point coordinates in ascending order of the x coordinate. White spaces can occur
freely in input. The input data are correct.

Output

For each set of data, your program should print the result to the standard output from the beginning of a line. The tour length, a floating-point number with two fractional digits, represents the result. An input/output sample is in the table below. Here there
are two data sets. The first one contains 3 points specified by their x and y coordinates. The second point, for example, has the x coordinate 2, and the y coordinate 3. The result for each data set is the tour length, (6.47 for the first data set in the given
example).

Sample Input

3
1 1
2 3
3 1
4
1 1
2 3
3 1
4 2

Sample Output

6.47
7.89

算是经典问题了吧。题目大意:给定平面上n个点的坐标(按x的升序),

你的任务是设计一条路线从最左边出发,到最右边再返回最左边,每点恰好经过一次。问最小代价。能够看成两个人从最左端同一时候出发。

每点恰有一人经过的最小代价。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<limits.h>
#include<cmath>
typedef long long LL;
using namespace std;
const int maxn=110;
double x[maxn],y[maxn];
double dp[maxn][maxn]; double dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
for(int i=0;i<n;i++)
scanf("%lf%lf",&x[i],&y[i]);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
dp[i][j]=INT_MAX;
}
dp[0][0]=0.0;//初始化
for(int i=0;i<n;i++)
{
for(int j=0;j<i;j++)
{
dp[i][i-1]=min(dp[i][i-1],dp[i-1][j]+dis(i,j));//当走到dp[i-1][j]要走到第i个点时。有两种途径
dp[i][j]=min(dp[i][j],dp[i-1][j]+dis(i-1,i));//在i-1的人走到i或在j的人走到i;
}
}
// for(int i=0;i<n;i++)
// printf("fuck %d\n",dp[n-1][i]);
double ans=dp[n-1][n-2]+dis(n-1,n-2);
printf("%.2f\n",ans);
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

UVA 1347(POJ 2677) Tour(双色欧几里德旅行商问题)的更多相关文章

  1. POJ 2677 Tour

    题意:双调欧几里得旅行商问题.算法导论15-1题,从最左边的点严格从左走到右再从右走到左回到起点,所有点都要走且只走一次,求最短路径. 解法:定义dp[i][j]表示从i走到j的双调路径,分为两种情况 ...

  2. ACM - 动态规划 - UVA 1347 Tour

    UVA 1347 Tour 题解 题目大意:有 \(n\) 个点,给出点的 \(x\).\(y\) 坐标.找出一条经过所有点一次的回路,从最左边的点出发,严格向右走,到达最右点再严格向左,回到最左点. ...

  3. 【玩转单片机系列001】 08接口双色LED显示屏驱动方式探索

    前些日子,从淘宝上购得一块08接口的双色LED显示屏(打算做个音乐频谱显示器),捣鼓了好几天,终于搞清楚了其控制原理,在这里做个总结,算是备忘吧. 1.LED显示屏的扫描方式 LED显示屏的扫描方式有 ...

  4. 完美C++(第5版)(双色)

    完美C++(第5版)(双色) 薛正华 沈庚 韦远科 译 ISBN 978-7-121-23198-8 2014年6月出版 定价:148.00元 788页 16开 内容提要 <完美C++(第5版) ...

  5. HTML5移动开发即学即用(双色) 王志刚 pdf扫描版​

    HTML5已经广泛应用于各智能移动终端设备上,而且绝大部分技术已经被各种最新版本的测览器所支持:逐一剖析HTML5标准中包含的最新技术,详细介绍了HTML5新标准中提供的各种API,各种各样的应用实例 ...

  6. 括号序列问题 uva 1626 poj 1141【区间dp】

    首先考虑下面的问题:Code[VS] 3657 我们用以下规则定义一个合法的括号序列: (1)空序列是合法的 (2)假如S是一个合法的序列,则 (S) 和[S]都是合法的 (3)假如A 和 B 都是合 ...

  7. css实现双色饼图

    from:wx--前端早读课 首先回想用css画三角形的方法: <div class="triangle"></div> .triangle { displ ...

  8. UVa 1347 (双线程DP) Tour

    题意: 平面上有n个坐标均为正数的点,按照x坐标从小到大一次给出.求一条最短路线,从最左边的点出发到最右边的点,再回到最左边的点.除了第一个和最右一个点其他点恰好只经过一次. 分析: 可以等效为两个人 ...

  9. UVa 1347 Tour

    Tour Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Description   Joh ...

随机推荐

  1. python3中sum

    摘自https://blog.csdn.net/ikerpeng/article/details/17026011 其实python中sum有两种 一种是python自己的sum 另一种是python ...

  2. 9.3 Binder系统_驱动情景分析_服务获取过程

    4. 服务获取过程 test_client客户端: (1)在用户态先构造name=“hello”的数据(服务的名字是hello),调用ioctl发送数据给service_manager(handle= ...

  3. 以Spring整合EhCache为例从根本上了解Spring缓存这件事(转)

    前两节"Spring缓存抽象"和"基于注解驱动的缓存"是为了更加清晰的了解Spring缓存机制,整合任何一个缓存实现或者叫缓存供应商都应该了解并清楚前两节,如果 ...

  4. swift项目第一天:环境部署

    一:项目部署 项目部署 一.开源中国(OSChina) 网站地址:https://git.oschina.net/ 开源中国社区成立于2008年8月,其目的是为中国的IT技术人员提供一个全面的.快捷更 ...

  5. 用FATFS在SD卡里写一串数字

    用FATFS写SD卡,如写入数组 s[] ={1,2,3,4,5,6} 想要在txt中显示“123456” 就要把 s[0]=1+'0'    或 s[0]=1+48   或 s[0]=1+0x30  ...

  6. ZOJ 1076 Gene Assembly LIS

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=76 题目大意: 题目前面都是废话. 给你一串基因,然后给你上面的外显子的起始和终 ...

  7. Spring boot(二) springboot + jsp

    官方不推荐JSP在Spring Boot中使用! 一.添加依赖 在pim.xml 里面添加以下 jsp依赖 <dependency> <groupId>org.springfr ...

  8. Java提高:采用异常链传递异常

    一.分析 异常需要封装,但是仅仅封装还是不够的,还需要传递异常.一个系统的友好型的标识,友好的界面功能是一方面,另一方面就是系统出现非预期的情况的处理方式了. 二.场景 比如我们的JEE项目一般都又三 ...

  9. PatentTips - High-performance AHCI Interface

    BACKGROUND OF THE INVENTION Various storage protocols for communicating with storage devices are kno ...

  10. 嵌入式平台下的ldd

    x86平台有ldd可以很方便的查看对库的依赖关系,但在嵌入式linux环境中没有这个命令,替而代之是 CC=$(CROSS_COMPILE)gcc LDD=$(CROSS_COMPILE)readel ...