http://codeforces.com/problemset/problem/55/D

Beautiful Numbers : 这个数能整除它的全部位上非零整数。问[l,r]之间的Beautiful Numbers的个数。



若一个数能整除它的全部的非零数位。那么相当于它能整除个位数的最小公倍数。

因此记忆化搜索中的參数除了len(当前位)和up(是否达到上界),有一个prelcm表示前面的数的最小公倍数。推断这个数是否是Beautiful Numbers,还要有一个參数表示前面数,可是这个数太大,须要缩小它的范围。



难点:

缩小前面组成的数的范围。

能够发现全部个位数的最小公倍数是2520,如果当前的Beautiful Numbers是x,

那么 x % lcm{dig[i]} = 0, 

又 2520%lcm{dig[i]} = 0,

那么x%2520%lcm{ dig[i] } = 0,x范围由9*10^18变为2520。





处理超内存问题。



经过分析后能够设出dp[20][2050][2050],dp[i][j][k]表示处理到i位,前面的数的最小公倍数为j。前面的数%2520为k。

但这样




明显会TLE。。

由于1~9组成的最小公倍数仅仅有48个,能够离散化,这样数组就降到了dp[20][50][2520]。











#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
//#define LL __int64
#define LL long long
#define eps 1e-12
#define PI acos(-1.0)
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 4010;
const int max_lcm = 2520; LL gcd(LL a, LL b)
{
if(b == 0)
return a;
return gcd(b,a%b);
}
LL lcm(LL a, LL b)
{
return a/gcd(a,b)*b;
}
int dig[25];
LL dp[25][50][2525];
int hash[2525]; LL dfs(int len, int prelcm, int prenum, int up)
{
if(len == 0)
{
return prenum%prelcm == 0;
}
if(!up && dp[len][hash[prelcm]][prenum] != -1)
return dp[len][hash[prelcm]][prenum];
int n = up ? dig[len] : 9;
LL res = 0;
for(int i = 0; i <= n; i++)
{
int nownum = (prenum*10+i)%max_lcm;
int nowlcm = prelcm;
if(i)
nowlcm = lcm(prelcm,i);
res += dfs(len-1,nowlcm,nownum,up&&i==n);
}
if(!up)
dp[len][hash[prelcm]][prenum] = res;
return res;
} LL cal(LL num)
{
int len = 0;
while(num)
{
dig[++len] = num%10;
num /= 10;
}
return dfs(len,1,0,1);
} int main()
{
int test;
LL a,b;
int cnt = 0;
for(int i = 1; i <= 2520; i++) //离散化
{
if(max_lcm % i == 0)
hash[i] = ++cnt;
} scanf("%d",&test);
memset(dp,-1,sizeof(dp));
for(int item = 1; item <= test; item++)
{
scanf("%I64d %I64d",&a,&b);
printf("%I64d\n",cal(b) - cal(a-1));
} return 0;
}



CF D. Beautiful numbers (数位dp)的更多相关文章

  1. CF 55D. Beautiful numbers(数位DP)

    题目链接 这题,没想出来,根本没想到用最小公倍数来更新,一直想状态压缩,不过余数什么的根本存不下,看的von学长的blog,比着写了写,就是模版改改,不过状态转移构造不出,怎么着,都做不出来. #in ...

  2. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

  3. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  4. Codeforces Beta Round #51 D. Beautiful numbers 数位dp

    D. Beautiful numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55/p ...

  5. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

  6. CodeForces - 55D Beautiful numbers —— 数位DP

    题目链接:https://vjudge.net/problem/CodeForces-55D D. Beautiful numbers time limit per test 4 seconds me ...

  7. cf55D. Beautiful numbers(数位dp)

    题意 题目链接 Sol 看到这种题就不难想到是数位dp了. 一个很显然的性质是一个数若能整除所有位数上的数,则一定能整除他们的lcm. 根据这个条件我们不难看出我们只需要记录每个数对所有数的lcm(也 ...

  8. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  9. CF55D Beautiful numbers (数位dp)

    题目链接 题解 一个数能被一些数整除,那么一定被这些数的\(lcm\)整除 那么我们容易想到根据\(lcm\)设状态 我们可以发现有用的\(lcm\)只有\(48\)个 那么按照一般的数位\(dp\) ...

  10. codeforces 55D. Beautiful numbers 数位dp

    题目链接 一个数, 他的所有位上的数都可以被这个数整除, 求出范围内满足条件的数的个数. dp[i][j][k], i表示第i位, j表示前几位的lcm是几, k表示这个数mod2520, 2520是 ...

随机推荐

  1. String,创建对象问题

    String str=new String("aaa"); 这行代码究竟创建了几个String对象呢?答案是2个,而不是3个.由于new String("aaa" ...

  2. C#WebForm里面aspx,ajax请求后台。。。

    虽然WebForm里面有那些基本控件,后台CS里面也有许许多多的控件的方法.但是不见得有些标签不需要进行后台的访问,下面介绍一下三种aspx中访问后台的方式.. 第一种:WebMethod (静态方法 ...

  3. 前端HTML5思维导图笔记

    看不清的朋友右键保存或者新窗口打开哦!热爱学习前端,喜欢我可以关注我,更多的思维导图笔记

  4. SEO之如何做301转向

    1.如果网站使用的是(Linux+Apache+MySQL+PHP)主机,可以使用.htaccess文件做301转向 比如把/index.html 301转向到http://www.xinlvtian ...

  5. (转)vuex2.0 基本使用(3) --- getter

    有的组件中获取到 store 中的state,  需要对进行加工才能使用,computed 属性中就需要写操作函数,如果有多个组件中都需要进行这个操作,那么在各个组件中都写相同的函数,那就非常麻烦,这 ...

  6. VC常用代码之创建进程

    作者:朱金灿 来源:http://blog.csdn.net/clever101 创建进程是编程开发的常用操作.Windows中的创建进程采用API函数CreateProcess实现.下面是一个使用例 ...

  7. 解决无法移除tomcat中的项目

    问题:启动myeclipse,tomcat提示报错,blind,但是你移除的时候无法移除,只会显示一个黄色的感叹号,此时你直接在webapp中删除时,也提示呗占用无法删除. 办法:关掉myeclips ...

  8. Centos6.6 安装Memcached

    一.环境介绍 1)Centos6.4 2) memcached-1.4.24 二.部署安装 计划具体部署步骤: 步骤1:安装 步骤2:配置 步骤3:运行 步骤4:检查 现在开始: 1)安装 $ yum ...

  9. MxNet教程:使用一台机器训练1400万张图片

    官网链接:http://mxnet.readthedocs.io/en/latest/tutorials/imagenet_full.html Training Deep Net on 14 Mill ...

  10. 预备篇 I :范畴与函子

    拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科.它只考虑物体间的位置关系而不考虑它们的形状和大小. 拓扑是集合上的一种结构. 拓扑英文名是Topology,直译是地志学,最早 ...