Vladik and Entertaining Flags
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In his spare time Vladik estimates beauty of the flags.

Every flag could be represented as the matrix n × m which consists of positive integers.

Let's define the beauty of the flag as number of components in its matrix. We call component a set of cells with same numbers and between any pair of cells from that set there exists a path through adjacent cells from same component. Here is the example of the partitioning some flag matrix into components:

But this time he decided to change something in the process. Now he wants to estimate not the entire flag, but some segment. Segment of flag can be described as a submatrix of the flag matrix with opposite corners at (1, l) and (n, r), where conditions 1 ≤ l ≤ r ≤ m are satisfied.

Help Vladik to calculate the beauty for some segments of the given flag.

Input

First line contains three space-separated integers nmq (1 ≤ n ≤ 10, 1 ≤ m, q ≤ 105) — dimensions of flag matrix and number of segments respectively.

Each of next n lines contains m space-separated integers — description of flag matrix. All elements of flag matrix is positive integers not exceeding 106.

Each of next q lines contains two space-separated integers lr (1 ≤ l ≤ r ≤ m) — borders of segment which beauty Vladik wants to know.

Output

For each segment print the result on the corresponding line.

Example
input
4 5 4
1 1 1 1 1
1 2 2 3 3
1 1 1 2 5
4 4 5 5 5
1 5
2 5
1 2
4 5
output
6
7
3
4
Note

Partitioning on components for every segment from first test case:

分析:给一个10*n矩阵,q次询问l到r内联通块个数;

   用线段树维护区间,每个节点维护左右两边即可,合并区间时使用”并查集“实现;

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <cassert>
#include <ctime>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
#define ls rt<<1
#define rs rt<<1|1
const int maxn=1e5+;
const int N=2e5+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
int n,m,k,t,a[][maxn],fa[],id[];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int Union(int x,int y)
{
x=find(x),y=find(y);
if(x==y)return ;
return fa[x]=y,;
}
struct node
{
int s[];
int cnt;
}s[maxn<<];
void pup(node &s,node l,node r,int pos)
{
s.cnt=l.cnt+r.cnt;
for(int i=;i<=*n;i++)fa[i]=i,id[i]=;
for(int i=;i<=n;i++)
{
if(a[i][pos]==a[i][pos+])s.cnt-=Union(l.s[i+n],r.s[i]+*n);
}
int cnt=;
for(int i=;i<=n;i++)
{
int &x=id[find(l.s[i])];
if(!x)x=++cnt;
s.s[i]=x;
int &y=id[find(r.s[i+n]+*n)];
if(!y)y=++cnt;
s.s[i+n]=y;
}
return ;
}
void build(int l,int r,int rt)
{
if(l==r)
{
s[rt].cnt=;
for(int i=;i<=n;i++)
{
if(a[i][l]!=a[i-][l])
{
s[rt].cnt++;
}
s[rt].s[i]=s[rt].s[i+n]=s[rt].cnt;
}
return ;
}
int mid=l+r>>;
build(l,mid,ls);
build(mid+,r,rs);
pup(s[rt],s[ls],s[rs],mid);
}
node gao(int L,int R,int l,int r,int rt)
{
if(L==l&&R==r)return s[rt];
int mid=l+r>>;
if(R<=mid)return gao(L,R,l,mid,ls);
else if(L>mid)return gao(L,R,mid+,r,rs);
else
{
node x=gao(L,mid,l,mid,ls);
node y=gao(mid+,R,mid+,r,rs);
node ret;
pup(ret,x,y,mid);
return ret;
}
}
int main()
{
int i,j;
int q;
scanf("%d%d%d",&n,&m,&q);
rep(i,,n)rep(j,,m)scanf("%d",&a[i][j]);
build(,m,);
while(q--)
{
int l,r;
scanf("%d%d",&l,&r);
printf("%d\n",gao(l,r,,m,).cnt);
}
return ;
}

Vladik and Entertaining Flags的更多相关文章

  1. codeforces 811E Vladik and Entertaining Flags(线段树+并查集)

    codeforces 811E Vladik and Entertaining Flags 题面 \(n*m(1<=n<=10, 1<=m<=1e5)\)的棋盘,每个格子有一个 ...

  2. 【Codeforces811E】Vladik and Entertaining Flags [线段树][并查集]

    Vladik and Entertaining Flags Time Limit: 20 Sec  Memory Limit: 512 MB Description n * m的矩形,每个格子上有一个 ...

  3. 2022.02.27 CF811E Vladik and Entertaining Flags

    2022.02.27 CF811E Vladik and Entertaining Flags https://www.luogu.com.cn/problem/CF811E Step 1 题意 在一 ...

  4. 2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集)

    2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集) https://www.luogu.com.cn/problem/CF811E Ste ...

  5. Vladik and Entertaining Flags CodeForces - 811E (并查集,线段树)

    用线段树维护每一块左右两侧的并查集, 同色合并时若不连通则连通块数-1, 否则不变 #include <iostream> #include <algorithm> #incl ...

  6. codeforces 811 E. Vladik and Entertaining Flags(线段树+并查集)

    题目链接:http://codeforces.com/contest/811/problem/E 题意:给定一个行数为10 列数10w的矩阵,每个方块是一个整数, 给定l和r 求范围内的联通块数量 所 ...

  7. CF811E Vladik and Entertaining Flags

    嘟嘟嘟 看题目这个架势,就知道要线段树,又看到维护联通块,那就得并查集. 所以,线段树维护并查集. 然而如果没想明白具体怎么写,就会gg的很惨-- 首先都容易想到维护区间联通块个数和区间端点两列的点, ...

  8. codeforces 416div.2

        A CodeForces 811A Vladik and Courtesy   B CodeForces 811B Vladik and Complicated Book   C CodeFo ...

  9. Codeforces Round#416 Div.2

    A. Vladik and Courtesy 题面 At regular competition Vladik and Valera won a and b candies respectively. ...

随机推荐

  1. 换npm yarn的源让install超时去死吧

    安装npm install时,长时间停留在fetchMetadata: sill mapToRegistry uri http://registry.npmjs.org/whatwg-fetch处, ...

  2. IDEA Spark Streaming Flume数据源 --解决无法转化为实际输入数据,及中文乱码(Scala)

    需要三步: 1.shell:往 1234 端口写数据 nc localhost 1234 2.shell: 启动flume服务 cd /usr/local2/flume/bin ./flume-ng ...

  3. PCB 利用nginx正向代理实现上网

    在PCB行业中,为了保证服务器的安全性,服务器正常都是需要与外网断开的,如果想在服务器通过浏览器下载一点东西是不行.通常作法是在一台可以上网的电脑下载文件,接着放到网络盘上,再从网络盘拷贝到服务器上. ...

  4. [App Store Connect帮助]一、 App Store Connect 使用入门(1)App Store Connect 工作流程

    您使用 App Store Connect 提交并管理您在 App Store 中销售的 App,使用 TestFlight 分发您 App 的 Beta 版本,接受法律协议,输入您的税务和银行业务信 ...

  5. 修路方案 Kruskal 之 次小生成树

    次小生成树 : Kruskal 是先求出来  最小生成树 , 并且记录下来所用到的的边 , 然后再求每次都 去掉最小生成树中的一个边 , 这样求最小生成树 , 然后看能不能得到 和原来最小生成树一样的 ...

  6. BZOJ 4085 丧心病狂的毒瘤题目 线段树+矩乘

    思路: 一眼矩阵快速幂 再用线段树维护一下矩阵就完了... 我hhhhh    哎我还是too young,too simple 入了这个大坑 线段树维护9个值 以上 如果A+1   转移矩阵是这个样 ...

  7. day03_12/13/2016_bean属性的设置之构造器方式注入

  8. ibatis知识点

    1:ibatis是apache的一个开源的项目,是一个O/R mapping解决方案,优点,小巧,灵活.2:搭建环境:导入ibatis相关jar包,jdbc驱动包等3:配置文件: jdbc连接的属性文 ...

  9. 常用的SSH注解标签

    常用的SSH注解标签 1.Spring的注解 关于配Bean用的        @Component        @Controller @Service @Repository        作用 ...

  10. [Windows Server 2012] Filezilla安装方法

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:FileZ ...