机器学习(十一) 支持向量机 SVM(下)
支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间。特征空间的维数可能非常高。如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高维空间中这个内积,即K( x, x′) =<φ( x) ⋅φ( x′) > 。那么支持向量机就不用计算复杂的非线性变换,而由这个函数 K(x, x′) 直接得到非线性变换的内积,使大大简化了计算。这样的函数 K(x, x′) 称为核函数
核函数包括线性核函数、多项式核函数、高斯核函数等,其中高斯核函数最常用,可以将数据映射到无穷维,也叫做径向基函数(Radial Basis Function 简称 RBF),是某种沿径向对称的标量函数。 [1] 通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 ,可记作 k(||x-xc||), 其作用往往是局部的,即当x远离xc时函数取值很小。
六、到底什么是核函数
七、RBF核函数
八、RBF核函数中的gamma
九、SVM思想解决回归问题
机器学习(十一) 支持向量机 SVM(下)的更多相关文章
- 机器学习(十一) 支持向量机 SVM(上)
一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督 ...
- 机器学习之支持向量机—SVM原理代码实现
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...
- 机器学习算法 - 支持向量机SVM
在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案 ...
- 【机器学习】支持向量机SVM
关于支持向量机SVM,这里也只是简单地作个要点梳理,尤其是要注意的是SVM的SMO优化算法.核函数的选择以及参数调整.在此不作过多阐述,单从应用层面来讲,重点在于如何使用libsvm,但对其原理算法要 ...
- python机器学习之支持向量机SVM
支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Sup ...
- 机器学习:支持向量机(SVM)
SVM,称为支持向量机,曾经一度是应用最广泛的模型,它有很好的数学基础和理论基础,但是它的数学基础却比以前讲过的那些学习模型复杂很多,我一直认为它是最难推导,比神经网络的BP算法还要难懂,要想完全懂这 ...
- 机器学习-5 支持向量机SVM
一.概念和背景 SVM:Support Vector Machine 支持向量机. 最早是由Vladimir N. Vapnik和Alexey Ya. Chervonenkis在1963年提出的. 目 ...
- 吴裕雄--天生自然python机器学习:支持向量机SVM
基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...
- 机器学习模型-支持向量机(SVM)
二.代码实现 import numpy as np from sklearn import datasets from sklearn.model_selection import train_tes ...
随机推荐
- 【转】在IIS上部署你的ASP.NET Core项目
概述 与ASP.NET时代不同,ASP.NET Core不再是由IIS工作进程(w3wp.exe)托管,而是使用自托管Web服务器(Kestrel)运行,IIS则是作为反向代理的角色转发请求到Kest ...
- JS装饰器模式
装饰器模式:在不改变原对象的基础上,通过对其进行包装拓展(添加属性或者方法),保护原有功能的完整性需要条件:原对象,新内容(属性/方法)个人理解:重新实现一下,原对象的方法,在方法内容,先执行原对象的 ...
- 跟着8张思维导图学习javascript (转)
学习的道路就是要不断的总结归纳,好记性不如烂笔头,so,下面将po出8张javascript相关的思维导图. 思维导图小tips:思维导图又叫心智图,是表达发射性思维的有效的图形思维工具 ,它简单却又 ...
- js中,实现对键盘按键的监听:
<script> function keyUp(e) { var currKey=0,e=e||event; currKey=e.keyCode||e.which||e.charCode; ...
- GCD与dispatch_group总结
GCD 可以看作是集合类的操作: 集合是queue,元素是block: 集合只能添加对象,删除对象由系统完成. 同理,NSOperationQueue也可以看作是一个集合管理器. dispatch_g ...
- ZBrush中如何使用套索工具绘制遮罩
ZBrush®中创建遮罩的方法有很多,可以手动创建矩形遮罩.圆形遮罩和图案遮罩,然而这些遮罩都是固定的形状.使用Zbrush中的套索遮罩能够实现不规则的图形遮罩,游刃有余的发挥创作. 使用套索工具绘制 ...
- Python中zip()与zip(*)的用法
目录 Python中zip()与zip(*)的用法 zip() 知识点来自leetcode最长公共前缀 Python中zip()与zip(*)的用法 可以看成是zip()为压缩,zip(*)是解压 z ...
- IOS - plist使用
//1 可读取,不可写入工程下的plist文件: // NSString *plistPath = [[NSBundle mainBundle] pathForResource:@"O ...
- Oracle-Trigger-Insert tableA and tableB
create or replace trigger trg_a after insert ON a for each rowbegin INSERT INTO b values(:NEW.ID,: ...
- linux 源码包安装拾遗
源码包安装和apt-get/yum的区别 安装前的区别:概念上的区别 rpm和dpkg包是经过编译过的包,并且其安装位置由厂商说了算,厂商觉得安装在哪里合适,就会装在哪里,而源码包则是没有经过编译的文 ...