BZOJ 2969 期望
思路:
我们可以分开算每个格子自己的期望啊...
期望可以累加的
那就把这个大格子 分成 9个部分 分别算好了...
//By SiriusRen
#include <cmath>
#include <cstdio>
using namespace std;
#define int long long
#define double long double
int w,h,k;
double ans;
signed main(){
scanf("%lld%lld%lld",&k,&w,&h);
for(int i=;i<=w;i++)
for(int j=;j<=h;j++){
int p=(i-)*(j-)*(w-i+)*(h-j+)+(i-)*(w-i+)*h+(i-)*(h-j)*(w-i+)*j;
p+=(j-)*w*(h-j+)+w*h+(h-j)*w*j+(w-i)*(j-)*i*(h-j+)+(w-i)*h*i+(h-j)*(w-i)*i*j;
ans+=-pow(1.0-1.0*p/w/w/h/h,k);
}
printf("%.0Lf\n",ans);
}
BZOJ 2969 期望的更多相关文章
- BZOJ 2969: 矩形粉刷(期望)
BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...
- bzoj 2969: 矩形粉刷 概率期望
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...
- bzoj 2969: 矩形粉刷 概率期望+快速幂
还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...
- BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)
BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...
- bzoj 3450 期望分数
自己只能想到O(n^2)的: dp[i][j] 表示 以i结尾,长度为j的o串的概率,然后在每次遇到x的时候算分数. 正解是: dp[i]表示前i个的答案,d[i]表示以i结尾的期望长度. 推的时候它 ...
- bzoj 1415 期望+记忆化搜索 ****
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdkAAAIfCAIAAACzfDFhAAAgAElEQVR4nOy9bVwTW57vm5fnhed+Pn
- bzoj 1415 期望dp + 记忆化搜索
思路:这个题看着感觉不能dp,其实是可以dp的,因为狼每次走两步,兔子每次走一步,每进行一轮以后,狼和兔子的距离 肯定是在接近的,没有相同的状态,dp之前预处理出来,每一步狼该往哪里走. #inclu ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- bzoj 4008 亚瑟王 - 动态规划 - 概率与期望
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...
随机推荐
- viod 0是什么?
之前在牛客网上看到别人用viod 0来代替undefined,所以我去网上搜了一下,MDN是这么说的: 这个运算符能向期望一个表达式的值是undefined的地方插入会产生副作用的表达式. void ...
- kvm virt-install 使用小结
简介: virt-install 能够为KVM.Xen或其它支持libvrit API的hypervisor创建虚拟机并完成GuestOS安装. 此外,它能够基于串行控制台.VNC或SDL支持文本或图 ...
- 【Apache Kafka】二、Kafka安装及简单示例
(一)Apache Kafka安装 1.安装环境与前提条件 安装环境:Ubuntu16.04 前提条件: ubuntu系统下安装好jdk 1.8以上版本,正确配置环境变量 ubuntu系统下安 ...
- Sessions共享技术设计
概述 分布式session是实现分布式部署的前提, 当前项目由于历史原因未实现分布式session, 但是由于在kubernets中部署多个pod时, 负载均衡的调用链太长, 导致会话不能保持, 所以 ...
- Jupyter Notebook 下安装 PHP 内核
我最近被强烈安利了 Jupyter Notebook 这个交互式笔记本.然后试用了它自带的 Python 内核后,这个应用整体给我的感觉很不错,就去搜索了下它所支持的其它内核 Jupyter Kern ...
- Maven学习总结(3)——使用Maven构建项目
Maven学习总结(三)--使用Maven构建项目 maven作为一个高度自动化构建工具,本身提供了构建项目的功能,下面就来体验一下使用maven构建项目的过程. 一.构建Jave项目 1.1.创建J ...
- detecting locked tables mysql (locked by LOCK TABLE)
detecting locked tables mysql (locked by LOCK TABLE) up vote15down votefavorite 7 I would like to kn ...
- [TYVJ1730]二逼平衡树
[TYVJ1730]二逼平衡树 题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查 ...
- CTF中编码与加解密总结
CTF中那些脑洞大开的编码和加密 转自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到 ...
- 网页title上面添加图片
1.效果: