BZOJ 2969 期望
思路:
我们可以分开算每个格子自己的期望啊...
期望可以累加的
那就把这个大格子 分成 9个部分 分别算好了...
//By SiriusRen
#include <cmath>
#include <cstdio>
using namespace std;
#define int long long
#define double long double
int w,h,k;
double ans;
signed main(){
scanf("%lld%lld%lld",&k,&w,&h);
for(int i=;i<=w;i++)
for(int j=;j<=h;j++){
int p=(i-)*(j-)*(w-i+)*(h-j+)+(i-)*(w-i+)*h+(i-)*(h-j)*(w-i+)*j;
p+=(j-)*w*(h-j+)+w*h+(h-j)*w*j+(w-i)*(j-)*i*(h-j+)+(w-i)*h*i+(h-j)*(w-i)*i*j;
ans+=-pow(1.0-1.0*p/w/w/h/h,k);
}
printf("%.0Lf\n",ans);
}
BZOJ 2969 期望的更多相关文章
- BZOJ 2969: 矩形粉刷(期望)
BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...
- bzoj 2969: 矩形粉刷 概率期望
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...
- bzoj 2969: 矩形粉刷 概率期望+快速幂
还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...
- BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)
BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...
- bzoj 3450 期望分数
自己只能想到O(n^2)的: dp[i][j] 表示 以i结尾,长度为j的o串的概率,然后在每次遇到x的时候算分数. 正解是: dp[i]表示前i个的答案,d[i]表示以i结尾的期望长度. 推的时候它 ...
- bzoj 1415 期望+记忆化搜索 ****
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdkAAAIfCAIAAACzfDFhAAAgAElEQVR4nOy9bVwTW57vm5fnhed+Pn
- bzoj 1415 期望dp + 记忆化搜索
思路:这个题看着感觉不能dp,其实是可以dp的,因为狼每次走两步,兔子每次走一步,每进行一轮以后,狼和兔子的距离 肯定是在接近的,没有相同的状态,dp之前预处理出来,每一步狼该往哪里走. #inclu ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- bzoj 4008 亚瑟王 - 动态规划 - 概率与期望
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...
随机推荐
- PHP 设计模式--序言
面向对象是PHP5之后增加的功能,是PHP走向现代语言的一个标志. 在过程式设计时代,PHP以学习成本低.入门快的特点赢得很多WEB开发者的青睐,但同时也限制了PHP的发展. 借鉴Java和C++之后 ...
- C#当中的out关键字(借鉴于CSDN)
一丶与ref关键字一样,out关键字也是按引用来传递的.out 关键字会导致参数通过引用来传递.这与 ref 关键字类似,不同之处在于 ref 要求变量必须在传递之前进行初始化.若要使用 out 参数 ...
- [C#] Linq 动态条件查询
应用背景:以货品为例,在基础数据中配置货品的判断规则,要根据这个规则筛选出符合条件的集合. 创建货品类 public class Product { public string Name { get; ...
- Problem 42
Problem 42 https://projecteuler.net/problem=42 The nth term of the sequence of triangle numbers is g ...
- hdu2017 字符串统计【C++】
字符串统计 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- JavaSE 学习笔记之StringBuffer(十五)
--< java.lang >-- StringBuffer字符串缓冲区: 构造一个其中不带字符的字符串缓冲区,初始容量为 16 个字符. 特点: 1:可以对字符串内容进行修改. 2:是一 ...
- 清北学堂模拟赛d7t1 消失的数字
题目描述 现在,我的手上有 n 个数字,分别是 a1; a2; a3; :::; an.我现在需要删除其中的 k 个数字.当然我不希望随随便便删除,我希望删除 k个数字之后,剩下的 n - k 个数中 ...
- spring boot开发REST接口
1.配置pom.xml文件的<parent>和<depencencies>,指定spring boot web依赖 <parent> <groupId> ...
- Servlet3.0中使用getPart进行文件上传
这个先进些,简单些,但书上提供的例子不能使用,到处弄了弄才行. servlet代码: package cc.openhome; import java.io.InputStream; import j ...
- Python开发工具安装
v阅读目录 v写在前面 v基本概念 vWindows搭建python开发环境 v从Hello World开始 v博客总结 v博客前言 从大学开始玩python到现在参加工作,已经有5年了,现在的公司是 ...