思路:

我们可以分开算每个格子自己的期望啊...

期望可以累加的

那就把这个大格子 分成 9个部分 分别算好了...

//By SiriusRen
#include <cmath>
#include <cstdio>
using namespace std;
#define int long long
#define double long double
int w,h,k;
double ans;
signed main(){
scanf("%lld%lld%lld",&k,&w,&h);
for(int i=;i<=w;i++)
for(int j=;j<=h;j++){
int p=(i-)*(j-)*(w-i+)*(h-j+)+(i-)*(w-i+)*h+(i-)*(h-j)*(w-i+)*j;
p+=(j-)*w*(h-j+)+w*h+(h-j)*w*j+(w-i)*(j-)*i*(h-j+)+(w-i)*h*i+(h-j)*(w-i)*i*j;
ans+=-pow(1.0-1.0*p/w/w/h/h,k);
}
printf("%.0Lf\n",ans);
}

BZOJ 2969 期望的更多相关文章

  1. BZOJ 2969: 矩形粉刷(期望)

    BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...

  2. bzoj 2969: 矩形粉刷 概率期望

    题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...

  3. bzoj 2969: 矩形粉刷 概率期望+快速幂

    还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...

  4. BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)

    BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...

  5. bzoj 3450 期望分数

    自己只能想到O(n^2)的: dp[i][j] 表示 以i结尾,长度为j的o串的概率,然后在每次遇到x的时候算分数. 正解是: dp[i]表示前i个的答案,d[i]表示以i结尾的期望长度. 推的时候它 ...

  6. bzoj 1415 期望+记忆化搜索 ****

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdkAAAIfCAIAAACzfDFhAAAgAElEQVR4nOy9bVwTW57vm5fnhed+Pn

  7. bzoj 1415 期望dp + 记忆化搜索

    思路:这个题看着感觉不能dp,其实是可以dp的,因为狼每次走两步,兔子每次走一步,每进行一轮以后,狼和兔子的距离 肯定是在接近的,没有相同的状态,dp之前预处理出来,每一步狼该往哪里走. #inclu ...

  8. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  9. bzoj 4008 亚瑟王 - 动态规划 - 概率与期望

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

随机推荐

  1. viod 0是什么?

    之前在牛客网上看到别人用viod 0来代替undefined,所以我去网上搜了一下,MDN是这么说的: 这个运算符能向期望一个表达式的值是undefined的地方插入会产生副作用的表达式. void ...

  2. kvm virt-install 使用小结

    简介: virt-install 能够为KVM.Xen或其它支持libvrit API的hypervisor创建虚拟机并完成GuestOS安装. 此外,它能够基于串行控制台.VNC或SDL支持文本或图 ...

  3. 【Apache Kafka】二、Kafka安装及简单示例

    (一)Apache Kafka安装 1.安装环境与前提条件   安装环境:Ubuntu16.04   前提条件: ubuntu系统下安装好jdk 1.8以上版本,正确配置环境变量 ubuntu系统下安 ...

  4. Sessions共享技术设计

    概述 分布式session是实现分布式部署的前提, 当前项目由于历史原因未实现分布式session, 但是由于在kubernets中部署多个pod时, 负载均衡的调用链太长, 导致会话不能保持, 所以 ...

  5. Jupyter Notebook 下安装 PHP 内核

    我最近被强烈安利了 Jupyter Notebook 这个交互式笔记本.然后试用了它自带的 Python 内核后,这个应用整体给我的感觉很不错,就去搜索了下它所支持的其它内核 Jupyter Kern ...

  6. Maven学习总结(3)——使用Maven构建项目

    Maven学习总结(三)--使用Maven构建项目 maven作为一个高度自动化构建工具,本身提供了构建项目的功能,下面就来体验一下使用maven构建项目的过程. 一.构建Jave项目 1.1.创建J ...

  7. detecting locked tables mysql (locked by LOCK TABLE)

    detecting locked tables mysql (locked by LOCK TABLE) up vote15down votefavorite 7 I would like to kn ...

  8. [TYVJ1730]二逼平衡树

    [TYVJ1730]二逼平衡树 题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查 ...

  9. CTF中编码与加解密总结

    CTF中那些脑洞大开的编码和加密 转自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到 ...

  10. 网页title上面添加图片

    1.效果: